Research Article
BibTex RIS Cite

Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology

Year 2025, Volume: 14 Issue: 1, 62 - 72, 30.04.2025
https://doi.org/10.54187/jnrs.1656185

Abstract

In this study, the Renyi holographic dark energy (RHDE) model is analyzed in the framework of the f(R, T) theory for the homogeneous anisotropic Bianchi metric. For this purpose, field equations are obtained in f(R, T) theory and Hubble parameter and energy density of Renyi holographic dark energy are utilized to obtain exact solutions of these equations. The obtained solutions were plotted using four different data sets and the models were analyzed in detail with the help of these plots.

Project Number

FDK-2023-4613

Thanks

This work was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FDK-2023-4613.

References

  • S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua,S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes,R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, ..., W. J. Couch, T. S. C. Project, Measurements of Ω andΛ from 42 High-Redshift Supernovae, The Astrophysical Journal 517 (2) (1999) 517–565.
  • P. J. E. Peebles, B. Ratra, The cosmological constant and dark energy, Reviews of Modern Physics 75 (2) (2003) 559–606.
  • S. Weinberg, The cosmological constant problem, Reviews of Modern Physics (1989), https://doi.org/10.1103/RevModPhys.61.1, Accessed 10 Mar 2025.
  • S. M. Carroll, W. H. Press, E. L. Turner, The cosmological constant., Annual Review of Astronomy and Astrophysics 30 (1992) 499–542.
  • R. R. Caldwell, R. Dave, P. J. Steinhardt, Cosmological imprint of an energy component with general equation of state, Physical Review Letters 80 (8) (1998) 1582–1585.
  • W. Fischler, L. Susskind, Holography and Cosmology (1998), https://doi.org/10.48550/arXiv.hep-th/9806039, Accessed 10 Mar 2025.
  • M. Li, A model of holographic dark energy, Physics Letters B 603 (1-2) (2004) 1–5.
  • A. Sheykhi, Thermodynamics of apparent horizon and modified Friedmann equations, European Physical Journal C 69 (1-2) (2010) 265–269.
  • H. Moradpour, S. A. Moosavi, I. P. Lobo, J. P. M. Graca, A. Jawad, I. G. Salako, Thermodynamic approach to holographic dark energy and the Renyi entropy, European Physical Journal C 78 (2018) 829.
  • T. Golanbari, K. Saaidi, P. Karimi, Renyi entropy and the holographic dark energy in flat spacetime (2020), https://doi.org/10.48550/arXiv.2002.04097, Accessed 10 Mar 2025.
  • V. K. Bhardwaj, A. Dixit, A. Pradhan, S. Krishnannair, Renyi holographic dark energy models in teleparallel gravity, International Journal of Modern Physics A 37 (2022) 2250178.
  • A. Saha, A. Chanda, S. Dey, S. Ghose, B. C. Paul, Interacting and non-interacting Renyiholographic dark energy models in DGP braneworld, Modern Physics Letters A 38 (2) (2023)2350024.
  • M. K. Alam, S. S. Singh, L. A. Devi, Renyi holographic dark energy and its behaviour in f(G) gravity, Astrophysics 66 (3) (2023) 383–410.
  • J. Bharali, K. Das, Modified Renyi holographic dark energy (MRHDE) in f(R, T) theory of gravity, Astrophysics 64 (4) (2021) 512–528.
  • R. Saleem, A. Ijaz, S. Waheed, Anisotropic cosmic expansion inspired by some novel holographic dark energy models in f(Q) theory, Fortschritte der Physik 73 (3) (2025) 2300276.
  • A. Sardar, S. Maity, U. Debnath, A. Pradhan, Different horizon cut-offs for Tsallis, Renyi and Sharma-Mittal holographic dark energies in Horava-Lifshitz gravity, Annals of Physics 473 (2025) 169891.
  • A. Samaddar, S. S. Singh, S. Muhammad, E. E. Zotos, Holographic dark energy models and their behaviors within the framework of f(Q, C) gravity theory, Journal of High Energy Astrophysics 44 (2024) 1–18.
  • A. Aktaş, S. Aygün, Barrow holographic dark energy models in Lyra and general relativity theories, Journal of New Results in Science 13 (2) (2024) 119–127.
  • A. Aktaş, İ. Yılmaz, Renyi type holographic dark energy, Journal of New Theory (48) (2024) 40–47.
  • T. Harko, F. S. N. Lobo, S. Nojiri, S. D. Odintsov, f(R, T) gravity, Physical Review D 84 (2)(2011) 024020.
  • V. C. Dubey, A. K. Mishra, U. K. Sharma, Diagnosing the Renyi holographic dark energy model in a flat universe, Astrophysics and Space Science 365 (7) (2020) 129.
  • S. K. J. Pacif, R. Myrzakulov, S. Myrzakul, Reconstruction of cosmic history from a simple parametrization of H, International Journal of Geometric Methods in Modern Physics 14 (7)(2017) 1750111.
  • J. V. Cunha, Kinematic constraints to the transition redshift from supernovae type Ia union data, Physical Review D 79 (4) (2009) 047301.
  • M. V. Santos, R. R. R. Reis, I. Waga, Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data, Journal of Cosmology and Astroparticle Physics 2016 (2) (2016) 066.
  • L. Xu, W. Li, J. Lu, Constraints on kinematic model from recent cosmic observations: SN Ia, BAO and observational Hubble data, Journal of Cosmology and Astroparticle Physics 2009 (7)(2009) 031.
  • B. S. Haridasu, V. V. Lukovic, M. Moresco, N. Vittorio, An improved model-independent assessment of the late-time cosmic expansion, Journal of Cosmology and Astroparticle Physics 2018 (10)(2018) 015.
  • N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, ..., A. Zonca, Planck 2018 results: VI. Cosmological parameters, Astronomy Astrophysics 641 (2020) A6.
  • G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, E. L. Wright., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, The Astrophysical Journal Supplement Series 208 (2) (2013) 19.

Year 2025, Volume: 14 Issue: 1, 62 - 72, 30.04.2025
https://doi.org/10.54187/jnrs.1656185

Abstract

Project Number

FDK-2023-4613

References

  • S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua,S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes,R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, ..., W. J. Couch, T. S. C. Project, Measurements of Ω andΛ from 42 High-Redshift Supernovae, The Astrophysical Journal 517 (2) (1999) 517–565.
  • P. J. E. Peebles, B. Ratra, The cosmological constant and dark energy, Reviews of Modern Physics 75 (2) (2003) 559–606.
  • S. Weinberg, The cosmological constant problem, Reviews of Modern Physics (1989), https://doi.org/10.1103/RevModPhys.61.1, Accessed 10 Mar 2025.
  • S. M. Carroll, W. H. Press, E. L. Turner, The cosmological constant., Annual Review of Astronomy and Astrophysics 30 (1992) 499–542.
  • R. R. Caldwell, R. Dave, P. J. Steinhardt, Cosmological imprint of an energy component with general equation of state, Physical Review Letters 80 (8) (1998) 1582–1585.
  • W. Fischler, L. Susskind, Holography and Cosmology (1998), https://doi.org/10.48550/arXiv.hep-th/9806039, Accessed 10 Mar 2025.
  • M. Li, A model of holographic dark energy, Physics Letters B 603 (1-2) (2004) 1–5.
  • A. Sheykhi, Thermodynamics of apparent horizon and modified Friedmann equations, European Physical Journal C 69 (1-2) (2010) 265–269.
  • H. Moradpour, S. A. Moosavi, I. P. Lobo, J. P. M. Graca, A. Jawad, I. G. Salako, Thermodynamic approach to holographic dark energy and the Renyi entropy, European Physical Journal C 78 (2018) 829.
  • T. Golanbari, K. Saaidi, P. Karimi, Renyi entropy and the holographic dark energy in flat spacetime (2020), https://doi.org/10.48550/arXiv.2002.04097, Accessed 10 Mar 2025.
  • V. K. Bhardwaj, A. Dixit, A. Pradhan, S. Krishnannair, Renyi holographic dark energy models in teleparallel gravity, International Journal of Modern Physics A 37 (2022) 2250178.
  • A. Saha, A. Chanda, S. Dey, S. Ghose, B. C. Paul, Interacting and non-interacting Renyiholographic dark energy models in DGP braneworld, Modern Physics Letters A 38 (2) (2023)2350024.
  • M. K. Alam, S. S. Singh, L. A. Devi, Renyi holographic dark energy and its behaviour in f(G) gravity, Astrophysics 66 (3) (2023) 383–410.
  • J. Bharali, K. Das, Modified Renyi holographic dark energy (MRHDE) in f(R, T) theory of gravity, Astrophysics 64 (4) (2021) 512–528.
  • R. Saleem, A. Ijaz, S. Waheed, Anisotropic cosmic expansion inspired by some novel holographic dark energy models in f(Q) theory, Fortschritte der Physik 73 (3) (2025) 2300276.
  • A. Sardar, S. Maity, U. Debnath, A. Pradhan, Different horizon cut-offs for Tsallis, Renyi and Sharma-Mittal holographic dark energies in Horava-Lifshitz gravity, Annals of Physics 473 (2025) 169891.
  • A. Samaddar, S. S. Singh, S. Muhammad, E. E. Zotos, Holographic dark energy models and their behaviors within the framework of f(Q, C) gravity theory, Journal of High Energy Astrophysics 44 (2024) 1–18.
  • A. Aktaş, S. Aygün, Barrow holographic dark energy models in Lyra and general relativity theories, Journal of New Results in Science 13 (2) (2024) 119–127.
  • A. Aktaş, İ. Yılmaz, Renyi type holographic dark energy, Journal of New Theory (48) (2024) 40–47.
  • T. Harko, F. S. N. Lobo, S. Nojiri, S. D. Odintsov, f(R, T) gravity, Physical Review D 84 (2)(2011) 024020.
  • V. C. Dubey, A. K. Mishra, U. K. Sharma, Diagnosing the Renyi holographic dark energy model in a flat universe, Astrophysics and Space Science 365 (7) (2020) 129.
  • S. K. J. Pacif, R. Myrzakulov, S. Myrzakul, Reconstruction of cosmic history from a simple parametrization of H, International Journal of Geometric Methods in Modern Physics 14 (7)(2017) 1750111.
  • J. V. Cunha, Kinematic constraints to the transition redshift from supernovae type Ia union data, Physical Review D 79 (4) (2009) 047301.
  • M. V. Santos, R. R. R. Reis, I. Waga, Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data, Journal of Cosmology and Astroparticle Physics 2016 (2) (2016) 066.
  • L. Xu, W. Li, J. Lu, Constraints on kinematic model from recent cosmic observations: SN Ia, BAO and observational Hubble data, Journal of Cosmology and Astroparticle Physics 2009 (7)(2009) 031.
  • B. S. Haridasu, V. V. Lukovic, M. Moresco, N. Vittorio, An improved model-independent assessment of the late-time cosmic expansion, Journal of Cosmology and Astroparticle Physics 2018 (10)(2018) 015.
  • N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, ..., A. Zonca, Planck 2018 results: VI. Cosmological parameters, Astronomy Astrophysics 641 (2020) A6.
  • G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, E. L. Wright., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, The Astrophysical Journal Supplement Series 208 (2) (2013) 19.
There are 28 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Mutlu Battaloğlu This is me 0009-0002-4704-7570

Can Aktaş 0000-0002-0603-7862

Project Number FDK-2023-4613
Submission Date March 12, 2025
Acceptance Date April 18, 2025
Publication Date April 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Battaloğlu, M., & Aktaş, C. (2025). Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology. Journal of New Results in Science, 14(1), 62-72. https://doi.org/10.54187/jnrs.1656185
AMA Battaloğlu M, Aktaş C. Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology. JNRS. April 2025;14(1):62-72. doi:10.54187/jnrs.1656185
Chicago Battaloğlu, Mutlu, and Can Aktaş. “Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology”. Journal of New Results in Science 14, no. 1 (April 2025): 62-72. https://doi.org/10.54187/jnrs.1656185.
EndNote Battaloğlu M, Aktaş C (April 1, 2025) Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology. Journal of New Results in Science 14 1 62–72.
IEEE M. Battaloğlu and C. Aktaş, “Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology”, JNRS, vol. 14, no. 1, pp. 62–72, 2025, doi: 10.54187/jnrs.1656185.
ISNAD Battaloğlu, Mutlu - Aktaş, Can. “Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology”. Journal of New Results in Science 14/1 (April2025), 62-72. https://doi.org/10.54187/jnrs.1656185.
JAMA Battaloğlu M, Aktaş C. Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology. JNRS. 2025;14:62–72.
MLA Battaloğlu, Mutlu and Can Aktaş. “Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology”. Journal of New Results in Science, vol. 14, no. 1, 2025, pp. 62-72, doi:10.54187/jnrs.1656185.
Vancouver Battaloğlu M, Aktaş C. Renyi Entropy Based Dark Energy Models in Bianchi I Cosmology. JNRS. 2025;14(1):62-7.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).