BibTex RIS Cite

Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order mth

Year 2012, Volume: 1 Issue: 1, 50 - 70, 01.01.2012

Abstract

Kızmaz [13] studied the difference sequence spaces ℓ∞(∆), c(∆) and c(∆)

References

  • Ahmad Z.U. and Mursaleen M., Kthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. 42(1987), 57-61.
  • Altay B., On the space of p− summable difference sequences of order m, (1 ≤ p < ∞). Studia Sci. Math. Hungar 43(4)(2006), 387-402.
  • Altay B. and Ba¸sar F. and Mursaleen M., On the Euler sequence spaces which include the spaces ℓpand ℓ∞II, Inform. Sci. 176(2006), 1450-1462.
  • Altay B. and Ba¸sar F., Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57(1)(2005), 1-17.
  • Altay B. and Ba¸sar F., On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26(2002), 701-715.
  • Aydın C. and Ba¸sar F., On the new sequence spaces which include the spaces c0and c, Hokkaido Math. J. 33(2004), 383-398.
  • Aydın C. and Ba¸sar F., Some new difference sequence spaces, Appl. Math. Comput. 157(2004), 677-693.
  • Ba¸sar F. and Altay B., On the space of sequences of p− bounded variation and related matrix mappings, Ukrainian Math. J. 55(2003), 136-147.
  • C¸ olak R, Et M, Malkowsky E. Some topics of sequence spaces, In: Lecture Notes in Mathematics, Fırat Univ Elazı˜g, Turkey, 2004.1-63, Fırat Univ. Press, 2004, ISBN:975-394-0386-6
  • C¸ olak R. and Et M., On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J. 26(3)(1997), 483-492.
  • Demiriz S. and C¸ akan C., On some new paranormed Euler sequence spaces and Euler core , Acta Math. Sin. (Engl. Ser.),26(7)(2010), 1207-1222.
  • Jarrah A. M. and Malkowsky E., Ordinary, absolute and strong summability and matrix transformations, Filomat 17(2003), 59-78.
  • Kızmaz H., On certain sequence spaces, Canad. Math. Bull. 24(2)(1981), 169-176.
  • M. Mursaleen, A.K.Noman, Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comput. Math. Appl. 60(2010),1245- 1258.
  • M. Mursaleen, V. Karakaya, H. Polat, N. S¸im¸sek, Meausre of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl. 62(2011),814-820.
  • E. Evren Kara, M. Ba¸sarır, On compact operators and some Euler B(m)-difference sequence spaces, J. Math. Anal. Appl. 379(2011),499-511.
  • Maddox I.J., Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phios. Soc. 64(1968), 335-340.
  • Malkowsky E. and Parashar S.D., Matrix transformations in space of bounded and convergent difference sequence of order m, Analysis 17(1997), 87-97.
  • Malkowsky E., Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997), 187-196.
  • Malkowsky E. and Rakocevic V., An introduction into the theory of sequence spaces and measure of noncompactness, in: Zb. Rad. (Beogr), Vol. 9(17), Matematicki in- stitut SANU, Belgrade, (2000), 143-234.
  • Malkowsky E. and Rakocevic V. and Zivkovic S., Matrix transformations between 0the sequence spaces wp
  • Comput. 147(2004), 377-396.
  • (Λ), vp(Λ), c0(Λ), 1 < p < ∞, and BK- spaces, Appl. Math. [22] Malkowsky E., Klassen von Matrixabbildungen in paranormierten FK-R¨aumen, Analysis (Munich) (7) (1987), 275-292.
  • Ng P.-N. and Lee P.-Y., Ces`aro sequences spaces of non-absolute type, Comment Math. Prace Mat. 20(2)(1978), 429-433.
  • Rakocevic V., Funkcionalna analiza, Naucna knjiga, Belgrad, 1994.
  • Rakocevic V., Measures of noncompactness and some applications, Filomat 12(1998) 87-120.
  • Stieglitz M. and Tietz H., Matrix transformationen von folgenr¨aumen eine ergeb- nis¨ubersicht, Math. Z. 154 (1977), 1-16.
  • Wang C.-S., N¨orlund sequence spaces, Tamkang J. Math. 9(1978), 269-274.
  • Wilansky A., Summability through Functional Analysis, North-Holland Mathematics Studies , Amsterdam, 85 1984.
Year 2012, Volume: 1 Issue: 1, 50 - 70, 01.01.2012

Abstract

References

  • Ahmad Z.U. and Mursaleen M., Kthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. 42(1987), 57-61.
  • Altay B., On the space of p− summable difference sequences of order m, (1 ≤ p < ∞). Studia Sci. Math. Hungar 43(4)(2006), 387-402.
  • Altay B. and Ba¸sar F. and Mursaleen M., On the Euler sequence spaces which include the spaces ℓpand ℓ∞II, Inform. Sci. 176(2006), 1450-1462.
  • Altay B. and Ba¸sar F., Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57(1)(2005), 1-17.
  • Altay B. and Ba¸sar F., On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26(2002), 701-715.
  • Aydın C. and Ba¸sar F., On the new sequence spaces which include the spaces c0and c, Hokkaido Math. J. 33(2004), 383-398.
  • Aydın C. and Ba¸sar F., Some new difference sequence spaces, Appl. Math. Comput. 157(2004), 677-693.
  • Ba¸sar F. and Altay B., On the space of sequences of p− bounded variation and related matrix mappings, Ukrainian Math. J. 55(2003), 136-147.
  • C¸ olak R, Et M, Malkowsky E. Some topics of sequence spaces, In: Lecture Notes in Mathematics, Fırat Univ Elazı˜g, Turkey, 2004.1-63, Fırat Univ. Press, 2004, ISBN:975-394-0386-6
  • C¸ olak R. and Et M., On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J. 26(3)(1997), 483-492.
  • Demiriz S. and C¸ akan C., On some new paranormed Euler sequence spaces and Euler core , Acta Math. Sin. (Engl. Ser.),26(7)(2010), 1207-1222.
  • Jarrah A. M. and Malkowsky E., Ordinary, absolute and strong summability and matrix transformations, Filomat 17(2003), 59-78.
  • Kızmaz H., On certain sequence spaces, Canad. Math. Bull. 24(2)(1981), 169-176.
  • M. Mursaleen, A.K.Noman, Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comput. Math. Appl. 60(2010),1245- 1258.
  • M. Mursaleen, V. Karakaya, H. Polat, N. S¸im¸sek, Meausre of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl. 62(2011),814-820.
  • E. Evren Kara, M. Ba¸sarır, On compact operators and some Euler B(m)-difference sequence spaces, J. Math. Anal. Appl. 379(2011),499-511.
  • Maddox I.J., Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phios. Soc. 64(1968), 335-340.
  • Malkowsky E. and Parashar S.D., Matrix transformations in space of bounded and convergent difference sequence of order m, Analysis 17(1997), 87-97.
  • Malkowsky E., Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997), 187-196.
  • Malkowsky E. and Rakocevic V., An introduction into the theory of sequence spaces and measure of noncompactness, in: Zb. Rad. (Beogr), Vol. 9(17), Matematicki in- stitut SANU, Belgrade, (2000), 143-234.
  • Malkowsky E. and Rakocevic V. and Zivkovic S., Matrix transformations between 0the sequence spaces wp
  • Comput. 147(2004), 377-396.
  • (Λ), vp(Λ), c0(Λ), 1 < p < ∞, and BK- spaces, Appl. Math. [22] Malkowsky E., Klassen von Matrixabbildungen in paranormierten FK-R¨aumen, Analysis (Munich) (7) (1987), 275-292.
  • Ng P.-N. and Lee P.-Y., Ces`aro sequences spaces of non-absolute type, Comment Math. Prace Mat. 20(2)(1978), 429-433.
  • Rakocevic V., Funkcionalna analiza, Naucna knjiga, Belgrad, 1994.
  • Rakocevic V., Measures of noncompactness and some applications, Filomat 12(1998) 87-120.
  • Stieglitz M. and Tietz H., Matrix transformationen von folgenr¨aumen eine ergeb- nis¨ubersicht, Math. Z. 154 (1977), 1-16.
  • Wang C.-S., N¨orlund sequence spaces, Tamkang J. Math. 9(1978), 269-274.
  • Wilansky A., Summability through Functional Analysis, North-Holland Mathematics Studies , Amsterdam, 85 1984.
There are 29 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Serkan Demiriz This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 1 Issue: 1

Cite

APA Demiriz, S. (2012). Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order mth. Journal of New Results in Science, 1(1), 50-70.
AMA Demiriz S. Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order mth. JNRS. January 2012;1(1):50-70.
Chicago Demiriz, Serkan. “Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order Mth”. Journal of New Results in Science 1, no. 1 (January 2012): 50-70.
EndNote Demiriz S (January 1, 2012) Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order mth. Journal of New Results in Science 1 1 50–70.
IEEE S. Demiriz, “Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order mth”, JNRS, vol. 1, no. 1, pp. 50–70, 2012.
ISNAD Demiriz, Serkan. “Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order Mth”. Journal of New Results in Science 1/1 (January 2012), 50-70.
JAMA Demiriz S. Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order mth. JNRS. 2012;1:50–70.
MLA Demiriz, Serkan. “Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order Mth”. Journal of New Results in Science, vol. 1, no. 1, 2012, pp. 50-70.
Vancouver Demiriz S. Measure of Noncompactness of Matrix Operators on Some New Difference Sequence Spaces of Order mth. JNRS. 2012;1(1):50-7.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).