BibTex RIS Kaynak Göster

Weakly Iπg-Closed Sets

Yıl 2014, Cilt: 3 Sayı: 4, 22 - 32, 01.04.2014

Öz

called weakly Iπg-open sets in ideal topological spaces is introduced and the notion of weakly Iπg-closed sets in ideal topologicalspaces is studied. The relationships of weakly Iπg-closed sets andvarious properties of weakly Iπg-closed sets are investigated

Kaynakça

  • A. Acikgoz and S. Yuksel, Some new sets and decompositions of AI−R-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79
  • J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
  • J. Dontchev and T. Noiri, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
  • E. Ekici, On ACI-sets, BCI-sets, β∗-open sets and decompositions of continuity in I ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
  • E. Ekici and S. Ozen, A generalized class of τ * in ideal spaces, Filomat, 27(4)(2013), 529-5
  • S. Guler and A. C. Guler, On Iπgs∗-closed sets in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 3(4)(2011), 120-127.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • P. E. Long and L. L. Herrington, Basic properties of regular-closed functions, Rend. Circ. Mat. Palermo, 27(1978), 20-28.
  • M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
  • M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, Ig-normal and Ig- regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
  • J. K. Park, On πgp-closed sets in topological spaces, Indian J. Pure Appl. Math., (To appear). M. Rajamani, V. Inthumathi and S. Krishnaprakash, Iπg-closed sets and Iπg- continuity, Journal of Advanced Research in Pure Mathematics, 2(4)(2010), 63-72.
  • M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381.
  • R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
  • V. Zaitsev, On certian classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR., 178(1968), 778-779.
Yıl 2014, Cilt: 3 Sayı: 4, 22 - 32, 01.04.2014

Öz

Kaynakça

  • A. Acikgoz and S. Yuksel, Some new sets and decompositions of AI−R-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79
  • J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
  • J. Dontchev and T. Noiri, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
  • E. Ekici, On ACI-sets, BCI-sets, β∗-open sets and decompositions of continuity in I ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
  • E. Ekici and S. Ozen, A generalized class of τ * in ideal spaces, Filomat, 27(4)(2013), 529-5
  • S. Guler and A. C. Guler, On Iπgs∗-closed sets in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 3(4)(2011), 120-127.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • P. E. Long and L. L. Herrington, Basic properties of regular-closed functions, Rend. Circ. Mat. Palermo, 27(1978), 20-28.
  • M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
  • M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, Ig-normal and Ig- regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
  • J. K. Park, On πgp-closed sets in topological spaces, Indian J. Pure Appl. Math., (To appear). M. Rajamani, V. Inthumathi and S. Krishnaprakash, Iπg-closed sets and Iπg- continuity, Journal of Advanced Research in Pure Mathematics, 2(4)(2010), 63-72.
  • M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381.
  • R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
  • V. Zaitsev, On certian classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR., 178(1968), 778-779.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

O. Ravi Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 3 Sayı: 4

Kaynak Göster

APA Ravi, O. (2014). Weakly Iπg-Closed Sets. Journal of New Results in Science, 3(4), 22-32.
AMA Ravi O. Weakly Iπg-Closed Sets. JNRS. Nisan 2014;3(4):22-32.
Chicago Ravi, O. “Weakly Iπg-Closed Sets”. Journal of New Results in Science 3, sy. 4 (Nisan 2014): 22-32.
EndNote Ravi O (01 Nisan 2014) Weakly Iπg-Closed Sets. Journal of New Results in Science 3 4 22–32.
IEEE O. Ravi, “Weakly Iπg-Closed Sets”, JNRS, c. 3, sy. 4, ss. 22–32, 2014.
ISNAD Ravi, O. “Weakly Iπg-Closed Sets”. Journal of New Results in Science 3/4 (Nisan 2014), 22-32.
JAMA Ravi O. Weakly Iπg-Closed Sets. JNRS. 2014;3:22–32.
MLA Ravi, O. “Weakly Iπg-Closed Sets”. Journal of New Results in Science, c. 3, sy. 4, 2014, ss. 22-32.
Vancouver Ravi O. Weakly Iπg-Closed Sets. JNRS. 2014;3(4):22-3.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).