BibTex RIS Kaynak Göster

Mildly Ig-Closed Sets

Yıl 2014, Cilt: 3 Sayı: 5, 37 - 47, 01.05.2014

Öz

called mildly Ig-open sets in ideal topological spaces is introducedand the notion of mildly Ig-closed sets in ideal topological spacesis studied. The relationships of mildly Ig-closed sets and variousproperties of mildly Ig-closed sets are investigated

Kaynakça

  • A. Acikgoz and S. Yuksel, Some new sets and decompositions of AI−R-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79
  • J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
  • E. Ekici, On ACI-sets, BCI-sets, β∗-open sets and decompositions of continuity in I-open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
  • E. Ekici and S. Ozen, A generalized class of τ * in ideal spaces, Filomat, 27(4)(2013), 529-5
  • S. Guler and A. C. Guler, On Iπgs∗-closed sets in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 3(4)(2011), 120-127.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • N. Levine, Generalized closed sets in topology, Rend. Cir. Math. Palermo, 19(1970), 55
  • Z. Li, Some results on g-regular and g-normal spaces, Scientia, Series A : Mathe- matical Sciences, 23(2012), 67-73.
  • H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
  • B. M. Munshi, Seperation axioms, Acta Ciencia Indica, 12(1986), 140-144.
  • M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
  • M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, Ig-normal and Ig- regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
  • J. K. Park and J. H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitons and Fractals, 20(2004), 1103-1111.
  • P. Sundaram and N. Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-1012.
  • P. Sundaram and A. Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
  • R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
Yıl 2014, Cilt: 3 Sayı: 5, 37 - 47, 01.05.2014

Öz

Kaynakça

  • A. Acikgoz and S. Yuksel, Some new sets and decompositions of AI−R-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79
  • J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
  • E. Ekici, On ACI-sets, BCI-sets, β∗-open sets and decompositions of continuity in I-open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
  • E. Ekici and S. Ozen, A generalized class of τ * in ideal spaces, Filomat, 27(4)(2013), 529-5
  • S. Guler and A. C. Guler, On Iπgs∗-closed sets in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 3(4)(2011), 120-127.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • N. Levine, Generalized closed sets in topology, Rend. Cir. Math. Palermo, 19(1970), 55
  • Z. Li, Some results on g-regular and g-normal spaces, Scientia, Series A : Mathe- matical Sciences, 23(2012), 67-73.
  • H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
  • B. M. Munshi, Seperation axioms, Acta Ciencia Indica, 12(1986), 140-144.
  • M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
  • M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, Ig-normal and Ig- regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
  • J. K. Park and J. H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitons and Fractals, 20(2004), 1103-1111.
  • P. Sundaram and N. Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-1012.
  • P. Sundaram and A. Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
  • R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

O. Ravi Bu kişi benim

R.Senthil Kumarb Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 3 Sayı: 5

Kaynak Göster

APA Ravi, O., & Kumarb, R. (2014). Mildly Ig-Closed Sets. Journal of New Results in Science, 3(5), 37-47.
AMA Ravi O, Kumarb R. Mildly Ig-Closed Sets. JNRS. Mayıs 2014;3(5):37-47.
Chicago Ravi, O., ve R.Senthil Kumarb. “Mildly Ig-Closed Sets”. Journal of New Results in Science 3, sy. 5 (Mayıs 2014): 37-47.
EndNote Ravi O, Kumarb R (01 Mayıs 2014) Mildly Ig-Closed Sets. Journal of New Results in Science 3 5 37–47.
IEEE O. Ravi ve R. Kumarb, “Mildly Ig-Closed Sets”, JNRS, c. 3, sy. 5, ss. 37–47, 2014.
ISNAD Ravi, O. - Kumarb, R.Senthil. “Mildly Ig-Closed Sets”. Journal of New Results in Science 3/5 (Mayıs 2014), 37-47.
JAMA Ravi O, Kumarb R. Mildly Ig-Closed Sets. JNRS. 2014;3:37–47.
MLA Ravi, O. ve R.Senthil Kumarb. “Mildly Ig-Closed Sets”. Journal of New Results in Science, c. 3, sy. 5, 2014, ss. 37-47.
Vancouver Ravi O, Kumarb R. Mildly Ig-Closed Sets. JNRS. 2014;3(5):37-4.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).