BibTex RIS Cite

Generalized wa-Closed Sets in Topological Spaces

Year 2014, Volume: 3 Issue: 7, 7 - 19, 01.07.2014

Abstract

The aim of this paper is to introduce a new class ofclosed sets called gωα-closed sets using ωα-closed sets in topological spaces. This class is independent of ωα-closed sets. This newclass of set lies between the class of α-closed sets and the class ofαg-closed sets. Some of their properties are investigated. We alsodefine and study the gωα-closure and gωα-interior in topologicalspaces

References

  • M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-Open Sets and β-Continuous Mappings, Bull. Fac. Sci. Assint Unie., 12, 1983,77-90.
  • D. Andrijivic, Semi pre open sets, Mat. Vesnic, 38(1), 1986 24-32.
  • S.P. Arya and T.M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. 21, (1990), 717?719.
  • P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29, (1987), 376?382.
  • S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, ωα-Closed sets is Topological Spaces, The Global. J. Appl. Math. and Math. Sci,. 2, 2009, 53-63.
  • J.Dontchev, On Generalizing Semi-Pre-Open sets, Mem. Fac. Kochi Univ (Math, 16, 1995, 35-48.
  • Y.Gnanambal, On Generalized Pre-Regular Closed Sets in Topological Spaces, In- dian. J. pure appl. Math, 28(3), 1997 351-360.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70, 1963 36-41.
  • N. Levine, Generalized Closed Sets in Topology, Rent. Circ. Mat. Palermo, 19(2), 1970 89-96.
  • H. Maki, R. Devi, and K. Balachandran, Generalized α-Closed Sets in Topol- ogy,Bull. Fukuoka Univ, Ed., Part III., 42, 1993, 13-21.
  • H. Maki, R. Devi, and K. Balachandran, Associate Topologies of Generalized α- Closed Sets and α-Generalized Closed Sets, Mem. Fac. Kochi Univ. Ser. A. Math., 15, 1994, 51-63.
  • H. Maki, J. Umehara, and T. Noiri, Every Topological Space is Pre-T1/2, Mem. Fac. Sci. Kochi Univ. Math., 17, 1996 33-42.
  • A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, On Pre-Continuous and Weak Pre Continuous Mappings, Proc. Math and Phys.Soc. Egypt, 53, 1982 47-53.
  • A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, α-Open Mappings, Acta. Math. Hungar., 41, 1983 213-218.
  • N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore., 1999.
  • O. Njastad, On Some Classes of Nearly open Sets, Pacific. J. Math., 15, 1965 961-970.
  • N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33, (1993), 211?219.
  • A. Pushpalatha, Studies on Generalizations of Mappings in Topological Spaces, Ph.D.Thesis, Bharathiar University, Coinbatore.
  • M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, (1937), 374?481.
  • P. Sundaram, and N. Navalagi, On Weakly Generalized Continuous Maps, Weakly Generalized Closed Maps and Weakly Generalized Irresolute Maps, Far East. J. Math Sci., 6, 1998.
  • P. Sundaram, and M. Shrik John, On ω-Closed Sets in Topology, Acta Ciencia Indica, 4, 2000, 389-392.
  • M. K. R. S. Veera Kumar, g∗-preclosed sets, Acts Ciencia indica, 28(1), 2002, 51-60. [23] M. K. R. S. Veera Kumar, On α-Generalized-Regular Closed Sets, Indian Journal of Mathematics., 44(2), 2002, 165-181.
Year 2014, Volume: 3 Issue: 7, 7 - 19, 01.07.2014

Abstract

References

  • M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-Open Sets and β-Continuous Mappings, Bull. Fac. Sci. Assint Unie., 12, 1983,77-90.
  • D. Andrijivic, Semi pre open sets, Mat. Vesnic, 38(1), 1986 24-32.
  • S.P. Arya and T.M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. 21, (1990), 717?719.
  • P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29, (1987), 376?382.
  • S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, ωα-Closed sets is Topological Spaces, The Global. J. Appl. Math. and Math. Sci,. 2, 2009, 53-63.
  • J.Dontchev, On Generalizing Semi-Pre-Open sets, Mem. Fac. Kochi Univ (Math, 16, 1995, 35-48.
  • Y.Gnanambal, On Generalized Pre-Regular Closed Sets in Topological Spaces, In- dian. J. pure appl. Math, 28(3), 1997 351-360.
  • N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Monthly, 70, 1963 36-41.
  • N. Levine, Generalized Closed Sets in Topology, Rent. Circ. Mat. Palermo, 19(2), 1970 89-96.
  • H. Maki, R. Devi, and K. Balachandran, Generalized α-Closed Sets in Topol- ogy,Bull. Fukuoka Univ, Ed., Part III., 42, 1993, 13-21.
  • H. Maki, R. Devi, and K. Balachandran, Associate Topologies of Generalized α- Closed Sets and α-Generalized Closed Sets, Mem. Fac. Kochi Univ. Ser. A. Math., 15, 1994, 51-63.
  • H. Maki, J. Umehara, and T. Noiri, Every Topological Space is Pre-T1/2, Mem. Fac. Sci. Kochi Univ. Math., 17, 1996 33-42.
  • A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, On Pre-Continuous and Weak Pre Continuous Mappings, Proc. Math and Phys.Soc. Egypt, 53, 1982 47-53.
  • A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb, α-Open Mappings, Acta. Math. Hungar., 41, 1983 213-218.
  • N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore., 1999.
  • O. Njastad, On Some Classes of Nearly open Sets, Pacific. J. Math., 15, 1965 961-970.
  • N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33, (1993), 211?219.
  • A. Pushpalatha, Studies on Generalizations of Mappings in Topological Spaces, Ph.D.Thesis, Bharathiar University, Coinbatore.
  • M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, (1937), 374?481.
  • P. Sundaram, and N. Navalagi, On Weakly Generalized Continuous Maps, Weakly Generalized Closed Maps and Weakly Generalized Irresolute Maps, Far East. J. Math Sci., 6, 1998.
  • P. Sundaram, and M. Shrik John, On ω-Closed Sets in Topology, Acta Ciencia Indica, 4, 2000, 389-392.
  • M. K. R. S. Veera Kumar, g∗-preclosed sets, Acts Ciencia indica, 28(1), 2002, 51-60. [23] M. K. R. S. Veera Kumar, On α-Generalized-Regular Closed Sets, Indian Journal of Mathematics., 44(2), 2002, 165-181.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

S. S. Benchalli This is me

Publication Date July 1, 2014
Published in Issue Year 2014 Volume: 3 Issue: 7

Cite

APA Benchalli, S. S. (2014). Generalized wa-Closed Sets in Topological Spaces. Journal of New Results in Science, 3(7), 7-19.
AMA Benchalli SS. Generalized wa-Closed Sets in Topological Spaces. JNRS. July 2014;3(7):7-19.
Chicago Benchalli, S. S. “Generalized Wa-Closed Sets in Topological Spaces”. Journal of New Results in Science 3, no. 7 (July 2014): 7-19.
EndNote Benchalli SS (July 1, 2014) Generalized wa-Closed Sets in Topological Spaces. Journal of New Results in Science 3 7 7–19.
IEEE S. S. Benchalli, “Generalized wa-Closed Sets in Topological Spaces”, JNRS, vol. 3, no. 7, pp. 7–19, 2014.
ISNAD Benchalli, S. S. “Generalized Wa-Closed Sets in Topological Spaces”. Journal of New Results in Science 3/7 (July 2014), 7-19.
JAMA Benchalli SS. Generalized wa-Closed Sets in Topological Spaces. JNRS. 2014;3:7–19.
MLA Benchalli, S. S. “Generalized Wa-Closed Sets in Topological Spaces”. Journal of New Results in Science, vol. 3, no. 7, 2014, pp. 7-19.
Vancouver Benchalli SS. Generalized wa-Closed Sets in Topological Spaces. JNRS. 2014;3(7):7-19.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).