BibTex RIS Kaynak Göster

On A Type Of Faint Continuous Functions

Yıl 2015, Cilt: 4 Sayı: 8, 84 - 91, 29.05.2015

Öz

In this paper a new class of functions called stronglyfaint (τ, µ)-continuous functions has been introduced. Some prop-Keywords erties of such functions are studied, furthermore the relationshipsopen set, strongly faint (τ, µ)between strongly faint (τ, µ)-continuous function and its graph arealso being investigated here.continuous function.µ-open set, θ

Kaynakça

  • M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β- continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, 77-90, 1983.
  • D. Andrijevi´c, Semi-preopen sets, Mat. Vesnik, 38, 24-32, 1986.
  • M. C. Caldas, S. Jafari and T. Noiri, Some separation axioms via modified θ-open, Bull. Iran. Math. Soc., 29(2), 1-12, 2003.
  • M. C. Caldas, On the faintly e-continuous functions, Sarajevo Jour. Math., 8(20), 159-170, 2012. ´
  • A. Cs´asz´ar, Generalized topology, generalized continuity, Acta Math. Hungar., 96, 351-357, 2002. ´
  • A. Cs´asz´ar, Separation properties of θ-modications of topologies, Acta Math. Hun- gar., 102, 151-157, 2004. ´
  • A. Cs´asz´ar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106, 53-66, 2005. ´
  • A. Cs´asz´ar, Remarks on quasi topologies, Acta Math. Hungar., 119, 197-200, 2008.
  • E. Ekici, Generalized hyperconnectedness, Acta Math. Hungar., 133, 140-147, 2011.
  • E. Ekici, On e-open sets DP∗-sets DP E∗-sets and decompositions of continuity, Arabian Jour. Sci. Eng., 33(2A), 269-282, 2008.
  • S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Soc., 6, 689-696, 1998.
  • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41, 1963.
  • G. D. Maio and T. Noiri, On s-closed spaces, Indian Jour. Pure Appl. Math., 18, 226-233, 1987.
  • A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, 47-53, 1982.
  • O. Njast˚ad, On some classes of nearly open sets, Pacific Jour. Math., 15, 961-970, 19 J. H. Park, D. S. Song and R. Saadati, On generalized δ-semiclosed sets in topo- logical spaces, Chaos Solitons and Fractals, 33, 1329-1338, 2007.
  • S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21, 357-366, 1993.
  • B. Roy, On a type of generalized open sets, Applied Gen. Topology, 12(2), 163-173, 20 B. Roy, Unification on a type of continuity, Publ. Math. Debrecen, 82(2), 503-510, 20 B. Roy and S. Jafari, On covering properties via generalized open sets, Annales Univ. Sci. Budapest., 55, 57-65, 2012.
  • M. Saleh, On θ-closed sets and some forms of continuity, Archiv. Math., 40, 383- 393, 2003.
  • R.-X. Shen, A note on generalized connectedness, Acta Math. Hungar., 122, 231- 235, 2009.
  • S. SinhaRoy and S. Bandyopadhay, On θ-complete regular and locally θ-H-closed spaces, Bull. Cal. Math. Soc., 87, 19-26, 1995.
  • N. V. Veliˇcko, H-closed topological spaces, Mat. Sb., 70, 98-112, 1966.
Yıl 2015, Cilt: 4 Sayı: 8, 84 - 91, 29.05.2015

Öz

Kaynakça

  • M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β- continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, 77-90, 1983.
  • D. Andrijevi´c, Semi-preopen sets, Mat. Vesnik, 38, 24-32, 1986.
  • M. C. Caldas, S. Jafari and T. Noiri, Some separation axioms via modified θ-open, Bull. Iran. Math. Soc., 29(2), 1-12, 2003.
  • M. C. Caldas, On the faintly e-continuous functions, Sarajevo Jour. Math., 8(20), 159-170, 2012. ´
  • A. Cs´asz´ar, Generalized topology, generalized continuity, Acta Math. Hungar., 96, 351-357, 2002. ´
  • A. Cs´asz´ar, Separation properties of θ-modications of topologies, Acta Math. Hun- gar., 102, 151-157, 2004. ´
  • A. Cs´asz´ar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106, 53-66, 2005. ´
  • A. Cs´asz´ar, Remarks on quasi topologies, Acta Math. Hungar., 119, 197-200, 2008.
  • E. Ekici, Generalized hyperconnectedness, Acta Math. Hungar., 133, 140-147, 2011.
  • E. Ekici, On e-open sets DP∗-sets DP E∗-sets and decompositions of continuity, Arabian Jour. Sci. Eng., 33(2A), 269-282, 2008.
  • S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Soc., 6, 689-696, 1998.
  • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41, 1963.
  • G. D. Maio and T. Noiri, On s-closed spaces, Indian Jour. Pure Appl. Math., 18, 226-233, 1987.
  • A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, 47-53, 1982.
  • O. Njast˚ad, On some classes of nearly open sets, Pacific Jour. Math., 15, 961-970, 19 J. H. Park, D. S. Song and R. Saadati, On generalized δ-semiclosed sets in topo- logical spaces, Chaos Solitons and Fractals, 33, 1329-1338, 2007.
  • S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21, 357-366, 1993.
  • B. Roy, On a type of generalized open sets, Applied Gen. Topology, 12(2), 163-173, 20 B. Roy, Unification on a type of continuity, Publ. Math. Debrecen, 82(2), 503-510, 20 B. Roy and S. Jafari, On covering properties via generalized open sets, Annales Univ. Sci. Budapest., 55, 57-65, 2012.
  • M. Saleh, On θ-closed sets and some forms of continuity, Archiv. Math., 40, 383- 393, 2003.
  • R.-X. Shen, A note on generalized connectedness, Acta Math. Hungar., 122, 231- 235, 2009.
  • S. SinhaRoy and S. Bandyopadhay, On θ-complete regular and locally θ-H-closed spaces, Bull. Cal. Math. Soc., 87, 19-26, 1995.
  • N. V. Veliˇcko, H-closed topological spaces, Mat. Sb., 70, 98-112, 1966.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Bishwambhar Roy Bu kişi benim

Yayımlanma Tarihi 29 Mayıs 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 4 Sayı: 8

Kaynak Göster

APA Roy, B. (2015). On A Type Of Faint Continuous Functions. Journal of New Results in Science, 4(8), 84-91.
AMA Roy B. On A Type Of Faint Continuous Functions. JNRS. Ağustos 2015;4(8):84-91.
Chicago Roy, Bishwambhar. “On A Type Of Faint Continuous Functions”. Journal of New Results in Science 4, sy. 8 (Ağustos 2015): 84-91.
EndNote Roy B (01 Ağustos 2015) On A Type Of Faint Continuous Functions. Journal of New Results in Science 4 8 84–91.
IEEE B. Roy, “On A Type Of Faint Continuous Functions”, JNRS, c. 4, sy. 8, ss. 84–91, 2015.
ISNAD Roy, Bishwambhar. “On A Type Of Faint Continuous Functions”. Journal of New Results in Science 4/8 (Ağustos 2015), 84-91.
JAMA Roy B. On A Type Of Faint Continuous Functions. JNRS. 2015;4:84–91.
MLA Roy, Bishwambhar. “On A Type Of Faint Continuous Functions”. Journal of New Results in Science, c. 4, sy. 8, 2015, ss. 84-91.
Vancouver Roy B. On A Type Of Faint Continuous Functions. JNRS. 2015;4(8):84-91.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).