Research Article
BibTex RIS Cite

Fuzzy soft cycles in Fuzzy soft graphs

Year 2019, Volume: 8 Issue: 1, 26 - 35, 15.12.2019

Abstract



Fuzzy soft set
theory is one among many topics which has been developed recently for dealing
with uncertainties. In this paper, decomposition of complete fuzzy soft graphs
into Hamiltonian fuzzy soft cycles is proposed and related properties are
studied. Also, some results on complement of fuzzy soft cycles are presented
with examples.




References

  • Reference1 Alspach, B., 2008. The Wonderful Walecki Construction. Bulletin of the Institute of Combinatorics and its Applications, 52, 7-20.
  • Reference2 Maji, P. K., Biswas, R., Roy, A. R., 2001. Fuzzy soft sets. Journal of Fuzzy Mathematics, 9(3), 589-602.
  • Reference3 Molodtsov, D. A., 1999. Soft set theory – First Result. Computers and Mathematics with Applications, 37 19-31.
  • Reference4 Muhammad Akram, Fariha Zafar, 2016, Fuzzy soft trees. Southeast Asian Bulletin of Mathematics, 40(2), 151-170.
  • Reference5 Nagoor Gani, A., Latha, S. R., 2016. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree. Springer plus, 5, 1-10.
  • Reference6 Nirmala, G., Vijaya, M., 2012. Hamiltonian fuzzy cycles on 2n+1 fuzzy graph. International Journal of Scientific and Research Publications, 2 (11), 1-6.
  • Reference7 Rosenfeld, A., 1975. Fuzzy graphs, in : Zadeh, L. A., Fu, K. S., Shimura, M. (eds), Fuzzy sets and their Applications ( New York : Academic press), 77-95.
  • Reference8 Roy, A. R., Maji, P. K., 2007. A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 28(3), 412-418.
  • Reference9 Shashikala, S., Anil, P. N., 2016. Connectivity in Fuzzy soft graph and its complement. IOSR Journal of Mathematics, 12(5), 95-99.
  • Reference10 Sumit Mohinta, Samanta, T. K., 2015. An introduction to fuzzy soft graph. Mathematica Moravica, 19(2), 35-48.
  • Reference11 Zadeh, L. A., 1965. Fuzzy sets. Information and control, 8(3), 338-353.
Year 2019, Volume: 8 Issue: 1, 26 - 35, 15.12.2019

Abstract

References

  • Reference1 Alspach, B., 2008. The Wonderful Walecki Construction. Bulletin of the Institute of Combinatorics and its Applications, 52, 7-20.
  • Reference2 Maji, P. K., Biswas, R., Roy, A. R., 2001. Fuzzy soft sets. Journal of Fuzzy Mathematics, 9(3), 589-602.
  • Reference3 Molodtsov, D. A., 1999. Soft set theory – First Result. Computers and Mathematics with Applications, 37 19-31.
  • Reference4 Muhammad Akram, Fariha Zafar, 2016, Fuzzy soft trees. Southeast Asian Bulletin of Mathematics, 40(2), 151-170.
  • Reference5 Nagoor Gani, A., Latha, S. R., 2016. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree. Springer plus, 5, 1-10.
  • Reference6 Nirmala, G., Vijaya, M., 2012. Hamiltonian fuzzy cycles on 2n+1 fuzzy graph. International Journal of Scientific and Research Publications, 2 (11), 1-6.
  • Reference7 Rosenfeld, A., 1975. Fuzzy graphs, in : Zadeh, L. A., Fu, K. S., Shimura, M. (eds), Fuzzy sets and their Applications ( New York : Academic press), 77-95.
  • Reference8 Roy, A. R., Maji, P. K., 2007. A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 28(3), 412-418.
  • Reference9 Shashikala, S., Anil, P. N., 2016. Connectivity in Fuzzy soft graph and its complement. IOSR Journal of Mathematics, 12(5), 95-99.
  • Reference10 Sumit Mohinta, Samanta, T. K., 2015. An introduction to fuzzy soft graph. Mathematica Moravica, 19(2), 35-48.
  • Reference11 Zadeh, L. A., 1965. Fuzzy sets. Information and control, 8(3), 338-353.
There are 11 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Shashikala S

Anil P N

Publication Date December 15, 2019
Published in Issue Year 2019 Volume: 8 Issue: 1

Cite

APA S, S., & P N, A. (2019). Fuzzy soft cycles in Fuzzy soft graphs. Journal of New Results in Science, 8(1), 26-35.
AMA S S, P N A. Fuzzy soft cycles in Fuzzy soft graphs. JNRS. December 2019;8(1):26-35.
Chicago S, Shashikala, and Anil P N. “Fuzzy Soft Cycles in Fuzzy Soft Graphs”. Journal of New Results in Science 8, no. 1 (December 2019): 26-35.
EndNote S S, P N A (December 1, 2019) Fuzzy soft cycles in Fuzzy soft graphs. Journal of New Results in Science 8 1 26–35.
IEEE S. S and A. P N, “Fuzzy soft cycles in Fuzzy soft graphs”, JNRS, vol. 8, no. 1, pp. 26–35, 2019.
ISNAD S, Shashikala - P N, Anil. “Fuzzy Soft Cycles in Fuzzy Soft Graphs”. Journal of New Results in Science 8/1 (December 2019), 26-35.
JAMA S S, P N A. Fuzzy soft cycles in Fuzzy soft graphs. JNRS. 2019;8:26–35.
MLA S, Shashikala and Anil P N. “Fuzzy Soft Cycles in Fuzzy Soft Graphs”. Journal of New Results in Science, vol. 8, no. 1, 2019, pp. 26-35.
Vancouver S S, P N A. Fuzzy soft cycles in Fuzzy soft graphs. JNRS. 2019;8(1):26-35.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).