The permanent function is not as stable as the determinant function under the elementary row operations. For example, adding a non-zero scalar multiple of a row to another row does not change the determinant of a matrix, but this operation changes its permanent. In this article, the variation in the permanent by applying the operation, which adds a scalar multiple of a row to another row, is examined. The relationship between the permanent of the matrix to which this operation is applied and the permanent of the initial matrix is given by a theorem. Finally, the paper inquires the need for further research.
| Primary Language | English |
|---|---|
| Subjects | Mathematical Sciences |
| Journal Section | Research Article |
| Authors | |
| Submission Date | September 22, 2022 |
| Publication Date | March 31, 2023 |
| Published in Issue | Year 2023 Issue: 42 |