Research Article
BibTex RIS Cite

Year 2024, Issue: 46, 40 - 50, 29.03.2024
https://doi.org/10.53570/jnt.1407690
https://izlik.org/JA38GC24TS

Abstract

References

  • J.-P. Allouche, T. Johnson, Narayana's cows and delayed morphisms, Journées d'Informatique Musicale (1996) 6 pages.
  • A. N. Singh, On the use of series in Hindu mathematics, Osiris 1 (1936) 606-628.
  • T. Koshy, Fibonacci and Lucas numbers with applications, 2nd Edition, John Wiley & Sons, New Jersey, 2019.
  • N. Sloane, The on-line encyclopedia of integer sequences, Mathematicae et Informaticae 41 (2013) 219-234.
  • G. Bilgici, The generalized order-$k$ Narayana's cows numbers, Mathematica Slovaca 66 (4) (2016) 795-802.
  • T. V. Didkivska, M. St'opochkina, Properties of Fibonacci-Narayana numbers, In the World of Mathematics 9 (1) (2003) 29-36.
  • C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Advances in Applied Clifford Algebras 23 (3) (2013) 673-688.
  • T. Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae 49 (2018) 75-84.
  • J. L. Ramírez, V. F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informatica 45 (2015) 91-105.
  • R. Zatorsky, T. Goy, Parapermanents of triangular matrices and some general theorems on number sequences, Journal of Integer Sequences 19 (2) (2016) Article 16.2.2 23 pages.
  • Y. Soykan, On generalized Narayana numbers, International Journal of Advances in Applied Mathematics and Mechanics 7 (3) (2020) 43-56.
  • P.-N. Ng, P.-Y. Lee, Cesáro sequences spaces of non-absolute type, Commentationes Mathematicae (Prace Matematyczne) 20 (2) (1978) 429-433.
  • C.-S. Wang, On Nörlund sequence spaces, Tamkang Journal of Mathematics 9 (1) (1978) 269-274.
  • B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $\ell_p$ and $\ell_\infty$, Information Sciences 176 (10) (2006) 1450-1462.
  • M. Şengonül, F. Başar, Some new Cesáro sequence spaces of non-absolute type which include, Soochow Journal of Mathematics 31 (1) (2005) 107-119.
  • M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Computers & Mathematics with Applications 60 (5) (2010) 1299-1309.
  • S. Erdem, S. Demiriz, A study on strongly almost convergent and strongly almost null binomial double sequence spaces, Fundamental Journal of Mathematics and Applications 4 (4) (2021) 271-279.
  • F. Başar, Summability theory and its applications, 2nd Edition, Chapman and Hall/CRC, New York, 2022.
  • J. Boos, F. P. Cass, Classical and modern methods in summability, Oxford University Press, Oxford, 2000.
  • E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, Journal of Inequalities and Applications 2013 (1) (2013) Article Number 38 15 pages.
  • M. Candan, E. E. Kara, A study of topological and geometrical characteristics of new Banach sequence spaces, Gulf Journal of Mathematics 3 (4) (2015) 67-84.
  • E. E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear algebra 64 (11) (2016) 2208-2223.
  • M. Karakaş, A. M. Karakaş, New Banach sequence spaces that is defined by the aid of Lucas numbers, Iğdır University Journal of the Institute of Science and Technology 7 (4) (2017) 103-111.
  • M. Karakaş, A. M. Karakaş, A study on Lucas difference sequence spaces $\ell_p(\hat{E}(r, s))$ and $\ell_\infty(\hat{E}(r, s))$, Maejo International Journal of Science and Technology 12 (1) (2018) 70-78.
  • T. Yaying, B. Hazarika, S. A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-European Journal of Mathematics 14 (06) (2021) 2150095 22 pages.
  • M. İ. Kara, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, Journal of Mathematical Analysis and Applications 498 (1) (2021) 124925 17 pages.
  • M. Karakaş, On the sequence spaces involving Bell numbers, Linear and Multilinear Algebra 71 (14) (2023) 2298-2309.
  • M. C. Dağli, A new almost convergent sequence space defined by Schröder matrix, Linear and Multilinear Algebra 71 (11) (2023) 1863-1874.
  • A. Wilansky, Summability through functional analysis, Elsevier, Amsterdam, 2000.
  • A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat 17 (2003) 59-78.
  • M. Stieglitz, H. Tietz, Matrix transformationen von Folgenräumen Eine Ergebnisübersicht, Mathematische Zeitschrift 154 (1977) 1-16.

On Some New Normed Narayana Sequence Spaces

Year 2024, Issue: 46, 40 - 50, 29.03.2024
https://doi.org/10.53570/jnt.1407690
https://izlik.org/JA38GC24TS

Abstract

In this paper, we first establish the regular matrix $N$ using Narayana numbers. Then, we create new normed sequence spaces $Z(N)$ using the matrix $ N$ and demonstrate that these spaces are linearly isomorphic to $Z$ where $Z\in\{c_0, c, \ell_p, \ell_\infty\}$. Additionally, we provide inclusion relations for the spaces $c_0(N)$, $c(N)$, $\ell_p(N)$, and $\ell_\infty(N)$. Furthermore, we construct the Schauder bases of the $c_0(N)$, $c(N)$, and $\ell_p(N)$. Finally, we compute the $\alpha$-, $\beta$-, and $\gamma$-duals of these spaces and characterize the classes $(Z(N),X)$ for the certain choice of the sequence space $X$.

References

  • J.-P. Allouche, T. Johnson, Narayana's cows and delayed morphisms, Journées d'Informatique Musicale (1996) 6 pages.
  • A. N. Singh, On the use of series in Hindu mathematics, Osiris 1 (1936) 606-628.
  • T. Koshy, Fibonacci and Lucas numbers with applications, 2nd Edition, John Wiley & Sons, New Jersey, 2019.
  • N. Sloane, The on-line encyclopedia of integer sequences, Mathematicae et Informaticae 41 (2013) 219-234.
  • G. Bilgici, The generalized order-$k$ Narayana's cows numbers, Mathematica Slovaca 66 (4) (2016) 795-802.
  • T. V. Didkivska, M. St'opochkina, Properties of Fibonacci-Narayana numbers, In the World of Mathematics 9 (1) (2003) 29-36.
  • C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Advances in Applied Clifford Algebras 23 (3) (2013) 673-688.
  • T. Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae 49 (2018) 75-84.
  • J. L. Ramírez, V. F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informatica 45 (2015) 91-105.
  • R. Zatorsky, T. Goy, Parapermanents of triangular matrices and some general theorems on number sequences, Journal of Integer Sequences 19 (2) (2016) Article 16.2.2 23 pages.
  • Y. Soykan, On generalized Narayana numbers, International Journal of Advances in Applied Mathematics and Mechanics 7 (3) (2020) 43-56.
  • P.-N. Ng, P.-Y. Lee, Cesáro sequences spaces of non-absolute type, Commentationes Mathematicae (Prace Matematyczne) 20 (2) (1978) 429-433.
  • C.-S. Wang, On Nörlund sequence spaces, Tamkang Journal of Mathematics 9 (1) (1978) 269-274.
  • B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $\ell_p$ and $\ell_\infty$, Information Sciences 176 (10) (2006) 1450-1462.
  • M. Şengonül, F. Başar, Some new Cesáro sequence spaces of non-absolute type which include, Soochow Journal of Mathematics 31 (1) (2005) 107-119.
  • M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Computers & Mathematics with Applications 60 (5) (2010) 1299-1309.
  • S. Erdem, S. Demiriz, A study on strongly almost convergent and strongly almost null binomial double sequence spaces, Fundamental Journal of Mathematics and Applications 4 (4) (2021) 271-279.
  • F. Başar, Summability theory and its applications, 2nd Edition, Chapman and Hall/CRC, New York, 2022.
  • J. Boos, F. P. Cass, Classical and modern methods in summability, Oxford University Press, Oxford, 2000.
  • E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, Journal of Inequalities and Applications 2013 (1) (2013) Article Number 38 15 pages.
  • M. Candan, E. E. Kara, A study of topological and geometrical characteristics of new Banach sequence spaces, Gulf Journal of Mathematics 3 (4) (2015) 67-84.
  • E. E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear algebra 64 (11) (2016) 2208-2223.
  • M. Karakaş, A. M. Karakaş, New Banach sequence spaces that is defined by the aid of Lucas numbers, Iğdır University Journal of the Institute of Science and Technology 7 (4) (2017) 103-111.
  • M. Karakaş, A. M. Karakaş, A study on Lucas difference sequence spaces $\ell_p(\hat{E}(r, s))$ and $\ell_\infty(\hat{E}(r, s))$, Maejo International Journal of Science and Technology 12 (1) (2018) 70-78.
  • T. Yaying, B. Hazarika, S. A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-European Journal of Mathematics 14 (06) (2021) 2150095 22 pages.
  • M. İ. Kara, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, Journal of Mathematical Analysis and Applications 498 (1) (2021) 124925 17 pages.
  • M. Karakaş, On the sequence spaces involving Bell numbers, Linear and Multilinear Algebra 71 (14) (2023) 2298-2309.
  • M. C. Dağli, A new almost convergent sequence space defined by Schröder matrix, Linear and Multilinear Algebra 71 (11) (2023) 1863-1874.
  • A. Wilansky, Summability through functional analysis, Elsevier, Amsterdam, 2000.
  • A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat 17 (2003) 59-78.
  • M. Stieglitz, H. Tietz, Matrix transformationen von Folgenräumen Eine Ergebnisübersicht, Mathematische Zeitschrift 154 (1977) 1-16.
There are 31 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Hacer Bilgin Ellidokuzoğlu 0000-0003-1658-201X

Submission Date December 20, 2023
Acceptance Date February 29, 2024
Early Pub Date March 28, 2024
Publication Date March 29, 2024
DOI https://doi.org/10.53570/jnt.1407690
IZ https://izlik.org/JA38GC24TS
Published in Issue Year 2024 Issue: 46

Cite

APA Bilgin Ellidokuzoğlu, H. (2024). On Some New Normed Narayana Sequence Spaces. Journal of New Theory, 46, 40-50. https://doi.org/10.53570/jnt.1407690
AMA 1.Bilgin Ellidokuzoğlu H. On Some New Normed Narayana Sequence Spaces. JNT. 2024;(46):40-50. doi:10.53570/jnt.1407690
Chicago Bilgin Ellidokuzoğlu, Hacer. 2024. “On Some New Normed Narayana Sequence Spaces”. Journal of New Theory, nos. 46: 40-50. https://doi.org/10.53570/jnt.1407690.
EndNote Bilgin Ellidokuzoğlu H (March 1, 2024) On Some New Normed Narayana Sequence Spaces. Journal of New Theory 46 40–50.
IEEE [1]H. Bilgin Ellidokuzoğlu, “On Some New Normed Narayana Sequence Spaces”, JNT, no. 46, pp. 40–50, Mar. 2024, doi: 10.53570/jnt.1407690.
ISNAD Bilgin Ellidokuzoğlu, Hacer. “On Some New Normed Narayana Sequence Spaces”. Journal of New Theory. 46 (March 1, 2024): 40-50. https://doi.org/10.53570/jnt.1407690.
JAMA 1.Bilgin Ellidokuzoğlu H. On Some New Normed Narayana Sequence Spaces. JNT. 2024;:40–50.
MLA Bilgin Ellidokuzoğlu, Hacer. “On Some New Normed Narayana Sequence Spaces”. Journal of New Theory, no. 46, Mar. 2024, pp. 40-50, doi:10.53570/jnt.1407690.
Vancouver 1.Bilgin Ellidokuzoğlu H. On Some New Normed Narayana Sequence Spaces. JNT [Internet]. 2024 Mar. 1;(46):40-5. Available from: https://izlik.org/JA38GC24TS


TR Dizin 26024

Electronic Journals Library 13651

                                EBSCO 36309                                     

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).