Research Article
BibTex RIS Cite

Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds

Year 2025, Issue: 51, 1 - 9, 30.06.2025
https://doi.org/10.53570/jnt.1647686

Abstract

This paper investigates several properties of the semiconformal curvature tensor on a $(\kappa,\mu)$-paracontact metric manifold. It first examines the results arising when such a manifold is both semiconformal and semisymmetric. Based on these findings, this study provides characterizations of the manifold. It then explores the derivative interactions between various curvature tensors and the semiconformal curvature tensor. According to the results, the present paper establishes the conditions under which a $(\kappa,\mu)$-paracontact metric manifold reduces to a $(\kappa, \mu)$-paracontact metric manifold.

References

  • S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 99 (1985) 173-187.
  • S. Zamkovoy, Canonical connections on paracontact manifolds, Annals of Global Analysis and Geometry 36 (1) (2009) 37-60.
  • B. C. Montano, I. K. Erken, C. Murathan, Nullity conditions in paracontact geometry, Differential Geometry and Its Applications 30 (6) (2012) 665-693.
  • B. C. Montano, L. Di Terlizzi, Geometric structures associated to a contact metric $(\kappa,\mu)$-space, Pacific Journal of Mathematics 246 (2) (2010) 257-292.
  • G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois Journal of Mathematics 55 (2) (2011) 697-718.
  • I. K. Erken, Generalized $(\bar{\kappa}\ne-1,\bar{\mu})$-paracontact metric manifolds with $\xi(\bar{\mu})=0$, International Electronic Journal of Geometry 8 (1) (2015) 77-93.
  • I. K. Erken, C. Murathan, A study of three-dimensional paracontact $(\kappa,\mu,\nu)$-spaces, International Journal of Geometric Methods in Modern Physics 14 (07) (2017) 1750106.
  • J. Kim, On pseudo semiconformally symmetric manifolds, Bulletin of the Korean Mathematical Society 54 (1) (2017) 177-186.
  • J. Kim, A type of conformal curvature tensor, Far East Journal of Mathematical Sciences 99 (1) (2016) 61-74.
  • J. P. Singh, M. Khatri, On almost pseudo semiconformally symmetric manifolds, Differential Geometry-Dynamical Systems 22 (2020) 233-253.
  • M. Ali, N. A. Pundeer, Y. Y. J. Suh, Proper semiconformal symmetries of spacetimes with divergence-free semiconformal curvature tensor, Filomat 33 (16) (2019) 5191-5198.
  • N. A. Pundeer, M. Ali, M. Bilal, A spacetime admitting semi-conformal curvature tensor, Balkan Journal of Geometry and Its Applications 27 (1) (2022) 130-137.
  • S. K. Yadav, A note on spacetimes in f(R)-Gravity, Annals of Communications in Mathematics 6 (2) (2023) 99-108.
  • S. K. Hui, A. Patra, A. Patra, On generalized weakly semi-conformally symmetric manifolds, Communications of the Korean Mathematical Society 36 (4) (2021) 771-782.
  • S. Shenawy, A. Rabie, U. C. De, C. Mantica, N. Bin Turki, Semi-conformally flat singly warped product manifolds and applications, Axioms 12 (12) (2023) 1078.
  • U. C. De, C. Dey, Lorentzian manifolds: A characterization with semiconformal curvature tensor, Communications of the Korean Mathematical Society 34 (3) (2019) 911-920.
  • U. C. De, Y. J. Suh, On weakly semiconformally symmetric manifolds, Acta Mathematica Hungarica 157 (2) (2019) 503-521.
  • A. Barman, Some properties of a semi-conformal curvature tensor on a Riemannian manifold, The Mathematics Student 91 (1-2) (2022) 201-208.
  • B. Y. Chen, U. C. De, N. B. Turki, A. A. Syied, Warped product manifolds: Characterizations through the symmetry of the semiconformal curvature tensor and applications, International Journal of Geometric Methods in Modern Physics 22 (02) (2025) 2450281.
  • J. P. Singh, M. Khatri, On semi-conformal curvature tensor in $(\kappa,\mu)$-contact metric manifold, in: M. Tosun (Ed.), Conference Proceeding of 18th International Geometry Symposium, Conference Proceeding Science and Technology, 4 (2), 2021, pp. 215-225.

Year 2025, Issue: 51, 1 - 9, 30.06.2025
https://doi.org/10.53570/jnt.1647686

Abstract

References

  • S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 99 (1985) 173-187.
  • S. Zamkovoy, Canonical connections on paracontact manifolds, Annals of Global Analysis and Geometry 36 (1) (2009) 37-60.
  • B. C. Montano, I. K. Erken, C. Murathan, Nullity conditions in paracontact geometry, Differential Geometry and Its Applications 30 (6) (2012) 665-693.
  • B. C. Montano, L. Di Terlizzi, Geometric structures associated to a contact metric $(\kappa,\mu)$-space, Pacific Journal of Mathematics 246 (2) (2010) 257-292.
  • G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois Journal of Mathematics 55 (2) (2011) 697-718.
  • I. K. Erken, Generalized $(\bar{\kappa}\ne-1,\bar{\mu})$-paracontact metric manifolds with $\xi(\bar{\mu})=0$, International Electronic Journal of Geometry 8 (1) (2015) 77-93.
  • I. K. Erken, C. Murathan, A study of three-dimensional paracontact $(\kappa,\mu,\nu)$-spaces, International Journal of Geometric Methods in Modern Physics 14 (07) (2017) 1750106.
  • J. Kim, On pseudo semiconformally symmetric manifolds, Bulletin of the Korean Mathematical Society 54 (1) (2017) 177-186.
  • J. Kim, A type of conformal curvature tensor, Far East Journal of Mathematical Sciences 99 (1) (2016) 61-74.
  • J. P. Singh, M. Khatri, On almost pseudo semiconformally symmetric manifolds, Differential Geometry-Dynamical Systems 22 (2020) 233-253.
  • M. Ali, N. A. Pundeer, Y. Y. J. Suh, Proper semiconformal symmetries of spacetimes with divergence-free semiconformal curvature tensor, Filomat 33 (16) (2019) 5191-5198.
  • N. A. Pundeer, M. Ali, M. Bilal, A spacetime admitting semi-conformal curvature tensor, Balkan Journal of Geometry and Its Applications 27 (1) (2022) 130-137.
  • S. K. Yadav, A note on spacetimes in f(R)-Gravity, Annals of Communications in Mathematics 6 (2) (2023) 99-108.
  • S. K. Hui, A. Patra, A. Patra, On generalized weakly semi-conformally symmetric manifolds, Communications of the Korean Mathematical Society 36 (4) (2021) 771-782.
  • S. Shenawy, A. Rabie, U. C. De, C. Mantica, N. Bin Turki, Semi-conformally flat singly warped product manifolds and applications, Axioms 12 (12) (2023) 1078.
  • U. C. De, C. Dey, Lorentzian manifolds: A characterization with semiconformal curvature tensor, Communications of the Korean Mathematical Society 34 (3) (2019) 911-920.
  • U. C. De, Y. J. Suh, On weakly semiconformally symmetric manifolds, Acta Mathematica Hungarica 157 (2) (2019) 503-521.
  • A. Barman, Some properties of a semi-conformal curvature tensor on a Riemannian manifold, The Mathematics Student 91 (1-2) (2022) 201-208.
  • B. Y. Chen, U. C. De, N. B. Turki, A. A. Syied, Warped product manifolds: Characterizations through the symmetry of the semiconformal curvature tensor and applications, International Journal of Geometric Methods in Modern Physics 22 (02) (2025) 2450281.
  • J. P. Singh, M. Khatri, On semi-conformal curvature tensor in $(\kappa,\mu)$-contact metric manifold, in: M. Tosun (Ed.), Conference Proceeding of 18th International Geometry Symposium, Conference Proceeding Science and Technology, 4 (2), 2021, pp. 215-225.
There are 20 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Ümit Yıldırım 0000-0002-7178-4223

Mustafa Arslan 0009-0008-6907-256X

Submission Date February 26, 2025
Acceptance Date May 18, 2025
Early Pub Date June 30, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Issue: 51

Cite

APA Yıldırım, Ü., & Arslan, M. (2025). Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds. Journal of New Theory(51), 1-9. https://doi.org/10.53570/jnt.1647686
AMA Yıldırım Ü, Arslan M. Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds. JNT. June 2025;(51):1-9. doi:10.53570/jnt.1647686
Chicago Yıldırım, Ümit, and Mustafa Arslan. “Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds”. Journal of New Theory, no. 51 (June 2025): 1-9. https://doi.org/10.53570/jnt.1647686.
EndNote Yıldırım Ü, Arslan M (June 1, 2025) Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds. Journal of New Theory 51 1–9.
IEEE Ü. Yıldırım and M. Arslan, “Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds”, JNT, no. 51, pp. 1–9, June2025, doi: 10.53570/jnt.1647686.
ISNAD Yıldırım, Ümit - Arslan, Mustafa. “Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds”. Journal of New Theory 51 (June2025), 1-9. https://doi.org/10.53570/jnt.1647686.
JAMA Yıldırım Ü, Arslan M. Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds. JNT. 2025;:1–9.
MLA Yıldırım, Ümit and Mustafa Arslan. “Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds”. Journal of New Theory, no. 51, 2025, pp. 1-9, doi:10.53570/jnt.1647686.
Vancouver Yıldırım Ü, Arslan M. Semiconformal Curvature Tensor on $(\kappa,\mu)$-Paracontact Metric Manifolds. JNT. 2025(51):1-9.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).