Research Article
BibTex RIS Cite

INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS

Year 2016, Issue: 14, 37 - 45, 22.07.2016

Abstract

In this note, the notions of soft int-ordered groupoids and soft left (resp., right) ideals are introduced. The characterization of int-soft ordered groupoids in terms of characteristic and inclusive sets is discussed. The concepts of soft prime ideals and soft int-filters are also introduced, and the relation between them is investigated.

References

  • [1] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
  • [2] N. Cagman, F. C. Tak, H. Aktas, Soft int-group and its applications to group theory, Neural. Comput. Appl. 21(2012) 151-158.
  • [3] K. Kaygsz, On soft int-groups, Ann. Fuzzy Math. Inform. 4 (2) (2012). 365-375.
  • [4] N. Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum 34 (1987) 367– 370.
  • [5] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japonica 35(1990) 1051–1056.
  • [6] N. Kehayopulu, M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum 65(2002) 128 – 132.
  • [7] A. Khan, N. Sarmin, F. Khan, B. Davvaz, A study of fuzzy soft interior ideals of ordered semigroups, Iranian Journal of Science & Technology, 37A3: (2013) 237-249
  • [8] D. A. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications 37 (1999) 19-31.
  • [9] A. Sezgin, A. Atagun, Soft groups and normalistic soft groups, Computers and Mathematics with Applications 62(2) (2011) 685-698.
  • [10] I. Simsek, N. Cagman, K. Kaygisiz, On normal soft intersection groups, Contemp. Analy. And Appl. Math.,Vol.2, No.2 ( 2014) 258-267.
  • [11] S. Song, H. Kim, Y. Jun, Ideal theory in semigroups based on intersectional soft sets, The Scientific World J. Vol.2014, Article ID136424, (2014) 7 pages.
  • [12] G. Sun, Y. Li, Y. Yin Y, New characterizations of regular ordered semigroups in terms of fuzzy soft ideals, Mathematica Aeterna, Vol. 3, , no.7 (2013) 545 – 554
  • [13] S. Yuksela, T. Dizman, G. Yildizdan, U. Sertc, Application of soft sets to diagnose the prostate cancer Risk, Journal of Inequalities and Applications 2013, 2013:229
  • [14] L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353.
Year 2016, Issue: 14, 37 - 45, 22.07.2016

Abstract

References

  • [1] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
  • [2] N. Cagman, F. C. Tak, H. Aktas, Soft int-group and its applications to group theory, Neural. Comput. Appl. 21(2012) 151-158.
  • [3] K. Kaygsz, On soft int-groups, Ann. Fuzzy Math. Inform. 4 (2) (2012). 365-375.
  • [4] N. Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum 34 (1987) 367– 370.
  • [5] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japonica 35(1990) 1051–1056.
  • [6] N. Kehayopulu, M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum 65(2002) 128 – 132.
  • [7] A. Khan, N. Sarmin, F. Khan, B. Davvaz, A study of fuzzy soft interior ideals of ordered semigroups, Iranian Journal of Science & Technology, 37A3: (2013) 237-249
  • [8] D. A. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications 37 (1999) 19-31.
  • [9] A. Sezgin, A. Atagun, Soft groups and normalistic soft groups, Computers and Mathematics with Applications 62(2) (2011) 685-698.
  • [10] I. Simsek, N. Cagman, K. Kaygisiz, On normal soft intersection groups, Contemp. Analy. And Appl. Math.,Vol.2, No.2 ( 2014) 258-267.
  • [11] S. Song, H. Kim, Y. Jun, Ideal theory in semigroups based on intersectional soft sets, The Scientific World J. Vol.2014, Article ID136424, (2014) 7 pages.
  • [12] G. Sun, Y. Li, Y. Yin Y, New characterizations of regular ordered semigroups in terms of fuzzy soft ideals, Mathematica Aeterna, Vol. 3, , no.7 (2013) 545 – 554
  • [13] S. Yuksela, T. Dizman, G. Yildizdan, U. Sertc, Application of soft sets to diagnose the prostate cancer Risk, Journal of Inequalities and Applications 2013, 2013:229
  • [14] L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353.
There are 14 citations in total.

Details

Journal Section Research Article
Authors

Essam Hamouda This is me

Publication Date July 22, 2016
Submission Date April 16, 2016
Published in Issue Year 2016 Issue: 14

Cite

APA Hamouda, E. (2016). INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS. Journal of New Theory(14), 37-45.
AMA Hamouda E. INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS. JNT. November 2016;(14):37-45.
Chicago Hamouda, Essam. “INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS”. Journal of New Theory, no. 14 (November 2016): 37-45.
EndNote Hamouda E (November 1, 2016) INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS. Journal of New Theory 14 37–45.
IEEE E. Hamouda, “INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS”, JNT, no. 14, pp. 37–45, November 2016.
ISNAD Hamouda, Essam. “INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS”. Journal of New Theory 14 (November 2016), 37-45.
JAMA Hamouda E. INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS. JNT. 2016;:37–45.
MLA Hamouda, Essam. “INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS”. Journal of New Theory, no. 14, 2016, pp. 37-45.
Vancouver Hamouda E. INTERSECTIONAL SOFT SETS IN ORDERED GROUPOIDS. JNT. 2016(14):37-45.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).