BibTex RIS Cite

C∞ SOFT MANIFOLDS

Year 2017, Issue: 18, 64 - 73, 01.09.2017

Abstract

In this paper, we briefly recall several basic notions of soft sets and soft topological spaces and we continue investigating the properties of soft mappings, soft continuous mappings and soft homeomorphisms. We introduce and discuss the properties of the soft topological manifolds of dimension n and define C∞soft manifolds which will strengthen the foundations of the theory of soft geometry. We study restriction of a soft mapping and then define submanifolds

Year 2017, Issue: 18, 64 - 73, 01.09.2017

Abstract

There are 0 citations in total.

Details

Other ID JA27TN75ZA
Journal Section Research Article
Authors

Marziyeh Mostafavi This is me

Publication Date September 1, 2017
Submission Date September 1, 2017
Published in Issue Year 2017 Issue: 18

Cite

APA Mostafavi, M. (2017). C∞ SOFT MANIFOLDS. Journal of New Theory(18), 64-73.
AMA Mostafavi M. C∞ SOFT MANIFOLDS. JNT. September 2017;(18):64-73.
Chicago Mostafavi, Marziyeh. “C∞ SOFT MANIFOLDS”. Journal of New Theory, no. 18 (September 2017): 64-73.
EndNote Mostafavi M (September 1, 2017) C∞ SOFT MANIFOLDS. Journal of New Theory 18 64–73.
IEEE M. Mostafavi, “C∞ SOFT MANIFOLDS”, JNT, no. 18, pp. 64–73, September 2017.
ISNAD Mostafavi, Marziyeh. “C∞ SOFT MANIFOLDS”. Journal of New Theory 18 (September 2017), 64-73.
JAMA Mostafavi M. C∞ SOFT MANIFOLDS. JNT. 2017;:64–73.
MLA Mostafavi, Marziyeh. “C∞ SOFT MANIFOLDS”. Journal of New Theory, no. 18, 2017, pp. 64-73.
Vancouver Mostafavi M. C∞ SOFT MANIFOLDS. JNT. 2017(18):64-73.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).