We introduce the concept of Path Laplacian Matrix for a graph and explore the eigenvalues of this matrix. The eigenvalues of this matrix are called the path Laplacian eigenvalues of the graph. We investigate path Laplacian eigenvalues of some classes of graph. Several results concerning path Laplacian eigenvalues of graphs have been obtained.
[1] Lowel W. Beineke, Robin J. Wilson, Topics in Algebraic Graph Theory, Cambridge University Press, 2004.
[2] Douglas B.West, Introduction to Graph theory, Prentice-Hall, U.S.A, 2001.
[3] R. B. Bapat, Graphs and Matrices, Hindustan Book agency, New Delhi, 2010.
[4] Brouwer A. E., Haemers W. E., Spectra of Graphs, Springer, New York, 2010.
[5] Varga, R. S., Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000.
[6] S. C. Patekar, M. M. Shikare, On the Path Matrices of Graphs and Their Properties, Advances and Applications in Discrete Mathematics, Vol. 17. N0. 2, (2016), pp 169- 184.
[7] M. M. Shikare, P. P. Malavadkar, S. C. Patekar, I. Gutman, On Path Eigenvalues and Path Energy of Graphs, MATCH Communications in Mathematical and in Computer Chemistry, Vol. 79. N0. 2, (2018), pp 387-398.
[8] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229.
[9] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
[10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. (1994)
143-176.
[11] R. Merris, A survey of graph Laplacians, Linear Multilinear Algebra 39 (1995) 19-31.
[1] Lowel W. Beineke, Robin J. Wilson, Topics in Algebraic Graph Theory, Cambridge University Press, 2004.
[2] Douglas B.West, Introduction to Graph theory, Prentice-Hall, U.S.A, 2001.
[3] R. B. Bapat, Graphs and Matrices, Hindustan Book agency, New Delhi, 2010.
[4] Brouwer A. E., Haemers W. E., Spectra of Graphs, Springer, New York, 2010.
[5] Varga, R. S., Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000.
[6] S. C. Patekar, M. M. Shikare, On the Path Matrices of Graphs and Their Properties, Advances and Applications in Discrete Mathematics, Vol. 17. N0. 2, (2016), pp 169- 184.
[7] M. M. Shikare, P. P. Malavadkar, S. C. Patekar, I. Gutman, On Path Eigenvalues and Path Energy of Graphs, MATCH Communications in Mathematical and in Computer Chemistry, Vol. 79. N0. 2, (2018), pp 387-398.
[8] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229.
[9] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
[10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. (1994)
143-176.
[11] R. Merris, A survey of graph Laplacians, Linear Multilinear Algebra 39 (1995) 19-31.
Patekar, S. C., & Shikare, M. M. (2018). On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs. Journal of New Theory(20), 93-101.
AMA
Patekar SC, Shikare MM. On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs. JNT. January 2018;(20):93-101.
Chicago
Patekar, Shridhar Chandrakant, and Maruti Mukinda Shikare. “On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs”. Journal of New Theory, no. 20 (January 2018): 93-101.
EndNote
Patekar SC, Shikare MM (January 1, 2018) On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs. Journal of New Theory 20 93–101.
IEEE
S. C. Patekar and M. M. Shikare, “On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs”, JNT, no. 20, pp. 93–101, January 2018.
ISNAD
Patekar, Shridhar Chandrakant - Shikare, Maruti Mukinda. “On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs”. Journal of New Theory 20 (January 2018), 93-101.
JAMA
Patekar SC, Shikare MM. On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs. JNT. 2018;:93–101.
MLA
Patekar, Shridhar Chandrakant and Maruti Mukinda Shikare. “On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs”. Journal of New Theory, no. 20, 2018, pp. 93-101.
Vancouver
Patekar SC, Shikare MM. On Path Laplacian Eigenvalues and Path Laplacian Energy of Graphs. JNT. 2018(20):93-101.