In this paper we introduce and study the notions of upper and lower δ<sub>ij</sub>-continuous multifunctions. Several characterizations and properties concerning upper and lower δ<sub>ij</sub>-continuous multifunctions and other known forms of multifunctions introduced previously are investigated.
[5] M. S. El-Naschie, Topics in the mathematical physics of E-In¯nity theory, Chaos, Solitons and Fractals 30(3)(2006), 656-663.
[6] M. S. El-Naschine,, Quantum gravity, Cli®ord algebra, Fuzzy set theory and the fundamental constants of nature, Chaos, Solitons, Fractals 20(2004), 437-450.
[7] A. Kandil, E. E. Kerre, M. E. EL-Sha®ei and A. A. Nouh, Quasi µ-proximity spaces and pairwise µ-perfect irreducible. J. Austral Math. Soc., (Series A) 25 (1992), 322-333.
[8] J. C. Kelly, Bitopological spaces. Proc. London Math. Soc., 13(1963), 71-89.
[9] E. Klein and A. C. Thompson, Theory of correspondence, including applications to mathematical economic, John Wiley and Sons, 1984.
[10] Y. Kucuk, On some charecterizations of ±-continuous multifunctions. Demonstratio Mathematica 28 (1995)(3), 587-595.
[11] M. Kucuk and Y. Kucuk, Further properties of almost continuous multifunctions defined between bitopological spaces. Demonstratio Mathematica 29(3)(1995), 511-522.
[12] M. N. Mukherjee, G. K. Banerjee and S. Malakar, Bitopological QHC spaces.Indian J. Pure Appl. Math. 21(7)(1990), 639-648.
[13] M. N. Mukherjee and Ganguly, Generalization of almost continuous multifunctions to bitopological spaces. Bull. Cal. Math. Soc., 79(1987), 274-283.
[14] A. A. Nasef, Another weak forms of faint continuity, Chaos, Solitons and Fractals 12(2001),2219-2225.
[15] V. Popa, Multifunctions and bitopological spaces, Bull. Math. Soc. Sci. R. S. Romanic (N.S.) 67(19)(1976),147-152.
[16] V. Popa and T. Noiri, On upper and lower ®-precontinuous multifunctions Math. Slovaca 43(1996), 381-396.
[17] A. R. Singal and S. P. Arya, On pairwise almost regular spaces. Glasnik Math. 26(6)(1971), 335-343.
[18] R. E. Smithson, Maultifunctions and bitopological spaces. J. Nature. Sci. Math. 11(1972), 31-53.
[5] M. S. El-Naschie, Topics in the mathematical physics of E-In¯nity theory, Chaos, Solitons and Fractals 30(3)(2006), 656-663.
[6] M. S. El-Naschine,, Quantum gravity, Cli®ord algebra, Fuzzy set theory and the fundamental constants of nature, Chaos, Solitons, Fractals 20(2004), 437-450.
[7] A. Kandil, E. E. Kerre, M. E. EL-Sha®ei and A. A. Nouh, Quasi µ-proximity spaces and pairwise µ-perfect irreducible. J. Austral Math. Soc., (Series A) 25 (1992), 322-333.
[8] J. C. Kelly, Bitopological spaces. Proc. London Math. Soc., 13(1963), 71-89.
[9] E. Klein and A. C. Thompson, Theory of correspondence, including applications to mathematical economic, John Wiley and Sons, 1984.
[10] Y. Kucuk, On some charecterizations of ±-continuous multifunctions. Demonstratio Mathematica 28 (1995)(3), 587-595.
[11] M. Kucuk and Y. Kucuk, Further properties of almost continuous multifunctions defined between bitopological spaces. Demonstratio Mathematica 29(3)(1995), 511-522.
[12] M. N. Mukherjee, G. K. Banerjee and S. Malakar, Bitopological QHC spaces.Indian J. Pure Appl. Math. 21(7)(1990), 639-648.
[13] M. N. Mukherjee and Ganguly, Generalization of almost continuous multifunctions to bitopological spaces. Bull. Cal. Math. Soc., 79(1987), 274-283.
[14] A. A. Nasef, Another weak forms of faint continuity, Chaos, Solitons and Fractals 12(2001),2219-2225.
[15] V. Popa, Multifunctions and bitopological spaces, Bull. Math. Soc. Sci. R. S. Romanic (N.S.) 67(19)(1976),147-152.
[16] V. Popa and T. Noiri, On upper and lower ®-precontinuous multifunctions Math. Slovaca 43(1996), 381-396.
[17] A. R. Singal and S. P. Arya, On pairwise almost regular spaces. Glasnik Math. 26(6)(1971), 335-343.
[18] R. E. Smithson, Maultifunctions and bitopological spaces. J. Nature. Sci. Math. 11(1972), 31-53.
Nasef, A., Azzam, A.-e. F. A. A., & Seyam, N. (2018). Upper and Lower δij-Continuous Multifunctions. Journal of New Theory(21), 49-58.
AMA
Nasef A, Azzam AeFAA, Seyam N. Upper and Lower δij-Continuous Multifunctions. JNT. February 2018;(21):49-58.
Chicago
Nasef, Arafa, Abd-el Ftah. Abd Alla. Azzam, and Nada Seyam. “Upper and Lower δij-Continuous Multifunctions”. Journal of New Theory, no. 21 (February 2018): 49-58.
EndNote
Nasef A, Azzam A-eFAA, Seyam N (February 1, 2018) Upper and Lower δij-Continuous Multifunctions. Journal of New Theory 21 49–58.
IEEE
A. Nasef, A.-e. F. A. A. Azzam, and N. Seyam, “Upper and Lower δij-Continuous Multifunctions”, JNT, no. 21, pp. 49–58, February 2018.
ISNAD
Nasef, Arafa et al. “Upper and Lower δij-Continuous Multifunctions”. Journal of New Theory 21 (February 2018), 49-58.
JAMA
Nasef A, Azzam A-eFAA, Seyam N. Upper and Lower δij-Continuous Multifunctions. JNT. 2018;:49–58.
MLA
Nasef, Arafa et al. “Upper and Lower δij-Continuous Multifunctions”. Journal of New Theory, no. 21, 2018, pp. 49-58.
Vancouver
Nasef A, Azzam A-eFAA, Seyam N. Upper and Lower δij-Continuous Multifunctions. JNT. 2018(21):49-58.