Research Article
BibTex RIS Cite
Year 2020, Issue: 30, 53 - 56, 26.03.2020

Abstract

References

  • P. Holgate, Groupoids Satisfying a Simple Invertive Law, The Mathematics Student 61(1-4) (1992) 101-106.
  • M. A. Kazim, M. Naseeruddin, On Almost Semigroups, Alig. Bull. Math. 2 (1972) 1-7.
  • Q. Mushtaq, S. M. Yusuf, On LA-Semigroups, Alig. Bull. Math. 8(1978) 65-70.
  • J. R. Cho, J. Jezek, T. Kepka, Paramedial Groupoids, Czechoslovak Mathematical Journal 49(2) (1999) 277-290.
  • Q. Mushtaq, M. S. Kamran, On Left Almost Groups, Proceedings of the Pakistan Academy of Sciences 33(1996) 1-2.
  • Q. Mushtaq, Zeroids and Idempoids in AG-Groupoids, Quasigroups and Related Systems 11(2004).
  • Q. Mushtaq, M. Khan, Direct Product of Abel Grassmann's Groupoids, Journal of Interdisciplinary Mathematics 11 (2008) 461-467.
  • M. Shah, T. Shah, A. Ali, On The Cancellativity of AG-Groupoids, International Mathematical Forum 6(44) (2011) 2187-2194.

Cancellative Elements in Finite AG-groupoids

Year 2020, Issue: 30, 53 - 56, 26.03.2020

Abstract

An Abel-Grassmann's groupoid (brie
y AG-groupoid) is a groupoid S satisfying the left invertive law: (xy)z = (zy)x  for all x, y, z \in S. In the present paper, we
discuss the left and right cancellative property of elements of the nite AG-groupoid S. For an AG-groupoid with left identity it is known that every left cancellative ele-
ment is right cancellative. We prove a problem (for nite AG-groupoids) that every left cancellative element of an AG-groupoid (without left identity) is right cancella-
tive. Moreover, we generalize various results of nite AG-groupoids by removing the condition of existence of left identity.

References

  • P. Holgate, Groupoids Satisfying a Simple Invertive Law, The Mathematics Student 61(1-4) (1992) 101-106.
  • M. A. Kazim, M. Naseeruddin, On Almost Semigroups, Alig. Bull. Math. 2 (1972) 1-7.
  • Q. Mushtaq, S. M. Yusuf, On LA-Semigroups, Alig. Bull. Math. 8(1978) 65-70.
  • J. R. Cho, J. Jezek, T. Kepka, Paramedial Groupoids, Czechoslovak Mathematical Journal 49(2) (1999) 277-290.
  • Q. Mushtaq, M. S. Kamran, On Left Almost Groups, Proceedings of the Pakistan Academy of Sciences 33(1996) 1-2.
  • Q. Mushtaq, Zeroids and Idempoids in AG-Groupoids, Quasigroups and Related Systems 11(2004).
  • Q. Mushtaq, M. Khan, Direct Product of Abel Grassmann's Groupoids, Journal of Interdisciplinary Mathematics 11 (2008) 461-467.
  • M. Shah, T. Shah, A. Ali, On The Cancellativity of AG-Groupoids, International Mathematical Forum 6(44) (2011) 2187-2194.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mehtab Khan This is me

Amir Khan This is me

Muhammad Uzair Khan This is me

Publication Date March 26, 2020
Submission Date February 21, 2019
Published in Issue Year 2020 Issue: 30

Cite

APA Khan, M., Khan, A., & Khan, M. U. (2020). Cancellative Elements in Finite AG-groupoids. Journal of New Theory(30), 53-56.
AMA Khan M, Khan A, Khan MU. Cancellative Elements in Finite AG-groupoids. JNT. March 2020;(30):53-56.
Chicago Khan, Mehtab, Amir Khan, and Muhammad Uzair Khan. “Cancellative Elements in Finite AG-Groupoids”. Journal of New Theory, no. 30 (March 2020): 53-56.
EndNote Khan M, Khan A, Khan MU (March 1, 2020) Cancellative Elements in Finite AG-groupoids. Journal of New Theory 30 53–56.
IEEE M. Khan, A. Khan, and M. U. Khan, “Cancellative Elements in Finite AG-groupoids”, JNT, no. 30, pp. 53–56, March 2020.
ISNAD Khan, Mehtab et al. “Cancellative Elements in Finite AG-Groupoids”. Journal of New Theory 30 (March 2020), 53-56.
JAMA Khan M, Khan A, Khan MU. Cancellative Elements in Finite AG-groupoids. JNT. 2020;:53–56.
MLA Khan, Mehtab et al. “Cancellative Elements in Finite AG-Groupoids”. Journal of New Theory, no. 30, 2020, pp. 53-56.
Vancouver Khan M, Khan A, Khan MU. Cancellative Elements in Finite AG-groupoids. JNT. 2020(30):53-6.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).