Research Article
BibTex RIS Cite
Year 2020, Issue: 31, 41 - 47, 30.06.2020

Abstract

References

  • R. N. Majeed, S. A. El-Sheikh, Fuzzy Orbit Topological Spaces, IOP Conf. Series: Materials Science and Engineering 571 (2019) 012026 1-11.
  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
  • C. L. Chang, Fuzzy Topological Spaces, Journal of Mathematical Analysis and Applications 24 (1968) 182-190.
  • S. A. Ghour, A. Fora, On CDH Fuzzy Spaces, Journal of Intelligent and Fuzzy Systems 30(2) (2016) 935-941.
  • K. K. Azad, Fuzzy Hausdorff Spaces and Fuzzy Perfect Mappings, Journal of Mathematical Analysis and Applications 82 (1981) 297-305.
  • H. C. Chamuah, B. C. Chetia, Application of Fuzzy Topological Relation in Flood Prediction, International Journal of Computer Applications 122(7) (2015) 8-13.
  • D. N. Georgiou, B. K. Papadopoulos, On Fuzzy Compactness, Journal of Mathematical Analysis and Applications 233 (1999) 86-101.
  • O. Tantawy, S. A. El-Sheikh, R. Naser, Fuzzy Pairwise Separation Axioms in Fuzzy Bitopological Spaces, Jo ̈kull Journal 63(12) (2013) 243-260.
  • O. A. Tantawy, S.A. El-sheikh, R. N. Majeed, A Note on “Separation Axioms in Fuzzy Bitopological Spaces”, Journal of Intelligent and Fuzzy Systems 28 (2015) 2243-2244.
  • R. Malathi, M. K. Uma, Fuzzy Orbit* Continuous Mappings, Annals of Fuzzy Mathematics and Informatics 13(4) (2017) 465-474.

Fuzzy Orbit Irresolute Mappings

Year 2020, Issue: 31, 41 - 47, 30.06.2020

Abstract

Fuzzy orbit topological space is a new structure very recently given by [1]. This new space is based on the notion of open fuzzy orbit sets. The aim of this paper is to provide applications of open fuzzy orbit sets. We introduce the notions of fuzzy orbit irresolute mappings and fuzzy orbit open (resp. irresolute open) mappings and studied some of their properties. .

References

  • R. N. Majeed, S. A. El-Sheikh, Fuzzy Orbit Topological Spaces, IOP Conf. Series: Materials Science and Engineering 571 (2019) 012026 1-11.
  • L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
  • C. L. Chang, Fuzzy Topological Spaces, Journal of Mathematical Analysis and Applications 24 (1968) 182-190.
  • S. A. Ghour, A. Fora, On CDH Fuzzy Spaces, Journal of Intelligent and Fuzzy Systems 30(2) (2016) 935-941.
  • K. K. Azad, Fuzzy Hausdorff Spaces and Fuzzy Perfect Mappings, Journal of Mathematical Analysis and Applications 82 (1981) 297-305.
  • H. C. Chamuah, B. C. Chetia, Application of Fuzzy Topological Relation in Flood Prediction, International Journal of Computer Applications 122(7) (2015) 8-13.
  • D. N. Georgiou, B. K. Papadopoulos, On Fuzzy Compactness, Journal of Mathematical Analysis and Applications 233 (1999) 86-101.
  • O. Tantawy, S. A. El-Sheikh, R. Naser, Fuzzy Pairwise Separation Axioms in Fuzzy Bitopological Spaces, Jo ̈kull Journal 63(12) (2013) 243-260.
  • O. A. Tantawy, S.A. El-sheikh, R. N. Majeed, A Note on “Separation Axioms in Fuzzy Bitopological Spaces”, Journal of Intelligent and Fuzzy Systems 28 (2015) 2243-2244.
  • R. Malathi, M. K. Uma, Fuzzy Orbit* Continuous Mappings, Annals of Fuzzy Mathematics and Informatics 13(4) (2017) 465-474.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Rasha Naser Majeed This is me

Publication Date June 30, 2020
Submission Date September 30, 2019
Published in Issue Year 2020 Issue: 31

Cite

APA Majeed, R. N. (2020). Fuzzy Orbit Irresolute Mappings. Journal of New Theory(31), 41-47.
AMA Majeed RN. Fuzzy Orbit Irresolute Mappings. JNT. June 2020;(31):41-47.
Chicago Majeed, Rasha Naser. “Fuzzy Orbit Irresolute Mappings”. Journal of New Theory, no. 31 (June 2020): 41-47.
EndNote Majeed RN (June 1, 2020) Fuzzy Orbit Irresolute Mappings. Journal of New Theory 31 41–47.
IEEE R. N. Majeed, “Fuzzy Orbit Irresolute Mappings”, JNT, no. 31, pp. 41–47, June 2020.
ISNAD Majeed, Rasha Naser. “Fuzzy Orbit Irresolute Mappings”. Journal of New Theory 31 (June 2020), 41-47.
JAMA Majeed RN. Fuzzy Orbit Irresolute Mappings. JNT. 2020;:41–47.
MLA Majeed, Rasha Naser. “Fuzzy Orbit Irresolute Mappings”. Journal of New Theory, no. 31, 2020, pp. 41-47.
Vancouver Majeed RN. Fuzzy Orbit Irresolute Mappings. JNT. 2020(31):41-7.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).