Araştırma Makalesi
BibTex RIS Kaynak Göster

On Proper Class Coprojectively Generated by Modules With Projective Socle

Yıl 2020, Sayı: 32, 79 - 87, 30.09.2020

Öz

Let $\varepsilon$ : 0 --> A -->f B -->g C --> 0 be a short exact sequence of modules and module homomorphism. $\varepsilon$ is called gd-closed sequence if Imf is gd-closed in B. In this paper, the proper class $GD$− Closed, which is coprojectively generated by modules with projective socle, be studied and also its relations among Neat, Closed, $D$−Closed, $S$−Closed be investigated. Additionally, we examine coprojective modules of this class.                                                                 

                                                                                                                                                                                                                                                                      .

Destekleyen Kurum

Research Fund of the Cukurova University.

Proje Numarası

Project number: 12308

Kaynakça

  • N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending modules, Pitman Research Notes in Math. Ser. 313 Longman Scientific and Technical, Harlow, 1994.
  • E. Büyükaşık, Y. Durgun, Neat-flat Modules, Comm. Algebra 44 (2016) 416-428.
  • E. Büyükaşık, Y. Durgun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra 43 (2)(2015) 384-399.
  • A. David Buchsbaum, A note on homology in categories, Ann. of Math. (69) (2) (1959) 66-74.
  • J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Birkh¨auser Verlag, Basel, 2006.
  • S. Crivei, S.S¸ahinkaya, Modules whose closed submodules with essential socle are direct summands, Taiwanese J. Math. 18(4)(2014) 989-1002.
  • Y. Durgun, A. Çobankaya, On subprojectivity domains of g-semiartinian modules, J. Algebra Appl. (2021) https://doi.org/10.1142/S021949882150119X, (in press).
  • Y. Durgun, A. Çobankaya, Proper classes generated by t-closed submodules, An. S¸t. Univ. Ovidius Constanta 27 (2019) 83-95.
  • Y. Durgun, A. Çobankaya, G-Dickson Torsion Theory, International Science, Mathematics and Engineering Sciences Congress (2019) 978-983.
  • P. M. Cohn, On the free product of associative rings Math. Z. 71(1959) 380-398.
  • Y. Durgun, S. Özdemir, On S-Closed Submodules, J. Korean Math. Soc. 54 (2017) 1281-1299.
  • Y. Durgun, S. Özdemir, On D-Closed Submodules, Proc. Indian Acad. Sci (Math. Sci.) 130 (1)(2020) 14pp.
  • Y. Durgun, D-Extending Modules, Hacet. J. Math. Stat. (49)(2020) 1-7, https://doi.org/10.15672/hujms. 460241.
  • E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra Walter de Gruyter, Berlin-New York, 2000.
  • L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64(2)(2012) 131-143.
  • K.R. Goodearl, Singular torsion and the splitting properties, Amer. Math. Soc. 124 , Providence, R. I. 1972.
  • A. I. Generalov, On weak and !-high purities in the category of modules, Mat. Sb. (N.S.) 105(147)(3) (1978), 389-402.
  • Y. Kara, A. Tercan, When some complement of a z-closed submodule is a summand, Comm. Algebra, 46(7)(2018) 3071-3078.
  • Kepka, T., On one class of purities, Comment. Math. Univ. Carolinae, 14 (1973), 139-154.
  • W.K. Nicholson, J.F. Watters, Rings with projective socle, Proc. Amer. Math. Soc., 102 (1988) 443-450.
  • G. Renault, ´Etude de certains anneaux li´es aux sous-modules compl´ements d’un A-module, C. R. Acad. Sci. Paris 259 (1964) 4203-4205.
  • J. Rotman, An Introduction to Homological Algebra, Universitext, Springer-Verlag, New York, 2009.
  • E.G. Skljarenko, Relative homological algebra in the category of modules, Russian Math. Surveys, 333(201) (1978) 85-120.
  • H. Z¨oschinger, Schwach-Flache Moduln. Comm. Algebra 41 (12) (2013) 4393-4407.
Yıl 2020, Sayı: 32, 79 - 87, 30.09.2020

Öz

Proje Numarası

Project number: 12308

Kaynakça

  • N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending modules, Pitman Research Notes in Math. Ser. 313 Longman Scientific and Technical, Harlow, 1994.
  • E. Büyükaşık, Y. Durgun, Neat-flat Modules, Comm. Algebra 44 (2016) 416-428.
  • E. Büyükaşık, Y. Durgun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra 43 (2)(2015) 384-399.
  • A. David Buchsbaum, A note on homology in categories, Ann. of Math. (69) (2) (1959) 66-74.
  • J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Birkh¨auser Verlag, Basel, 2006.
  • S. Crivei, S.S¸ahinkaya, Modules whose closed submodules with essential socle are direct summands, Taiwanese J. Math. 18(4)(2014) 989-1002.
  • Y. Durgun, A. Çobankaya, On subprojectivity domains of g-semiartinian modules, J. Algebra Appl. (2021) https://doi.org/10.1142/S021949882150119X, (in press).
  • Y. Durgun, A. Çobankaya, Proper classes generated by t-closed submodules, An. S¸t. Univ. Ovidius Constanta 27 (2019) 83-95.
  • Y. Durgun, A. Çobankaya, G-Dickson Torsion Theory, International Science, Mathematics and Engineering Sciences Congress (2019) 978-983.
  • P. M. Cohn, On the free product of associative rings Math. Z. 71(1959) 380-398.
  • Y. Durgun, S. Özdemir, On S-Closed Submodules, J. Korean Math. Soc. 54 (2017) 1281-1299.
  • Y. Durgun, S. Özdemir, On D-Closed Submodules, Proc. Indian Acad. Sci (Math. Sci.) 130 (1)(2020) 14pp.
  • Y. Durgun, D-Extending Modules, Hacet. J. Math. Stat. (49)(2020) 1-7, https://doi.org/10.15672/hujms. 460241.
  • E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra Walter de Gruyter, Berlin-New York, 2000.
  • L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64(2)(2012) 131-143.
  • K.R. Goodearl, Singular torsion and the splitting properties, Amer. Math. Soc. 124 , Providence, R. I. 1972.
  • A. I. Generalov, On weak and !-high purities in the category of modules, Mat. Sb. (N.S.) 105(147)(3) (1978), 389-402.
  • Y. Kara, A. Tercan, When some complement of a z-closed submodule is a summand, Comm. Algebra, 46(7)(2018) 3071-3078.
  • Kepka, T., On one class of purities, Comment. Math. Univ. Carolinae, 14 (1973), 139-154.
  • W.K. Nicholson, J.F. Watters, Rings with projective socle, Proc. Amer. Math. Soc., 102 (1988) 443-450.
  • G. Renault, ´Etude de certains anneaux li´es aux sous-modules compl´ements d’un A-module, C. R. Acad. Sci. Paris 259 (1964) 4203-4205.
  • J. Rotman, An Introduction to Homological Algebra, Universitext, Springer-Verlag, New York, 2009.
  • E.G. Skljarenko, Relative homological algebra in the category of modules, Russian Math. Surveys, 333(201) (1978) 85-120.
  • H. Z¨oschinger, Schwach-Flache Moduln. Comm. Algebra 41 (12) (2013) 4393-4407.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Ayşe Çobankaya 0000-0002-9017-1465

Proje Numarası Project number: 12308
Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 4 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 32

Kaynak Göster

APA Çobankaya, A. (2020). On Proper Class Coprojectively Generated by Modules With Projective Socle. Journal of New Theory(32), 79-87.
AMA Çobankaya A. On Proper Class Coprojectively Generated by Modules With Projective Socle. JNT. Eylül 2020;(32):79-87.
Chicago Çobankaya, Ayşe. “On Proper Class Coprojectively Generated by Modules With Projective Socle”. Journal of New Theory, sy. 32 (Eylül 2020): 79-87.
EndNote Çobankaya A (01 Eylül 2020) On Proper Class Coprojectively Generated by Modules With Projective Socle. Journal of New Theory 32 79–87.
IEEE A. Çobankaya, “On Proper Class Coprojectively Generated by Modules With Projective Socle”, JNT, sy. 32, ss. 79–87, Eylül 2020.
ISNAD Çobankaya, Ayşe. “On Proper Class Coprojectively Generated by Modules With Projective Socle”. Journal of New Theory 32 (Eylül 2020), 79-87.
JAMA Çobankaya A. On Proper Class Coprojectively Generated by Modules With Projective Socle. JNT. 2020;:79–87.
MLA Çobankaya, Ayşe. “On Proper Class Coprojectively Generated by Modules With Projective Socle”. Journal of New Theory, sy. 32, 2020, ss. 79-87.
Vancouver Çobankaya A. On Proper Class Coprojectively Generated by Modules With Projective Socle. JNT. 2020(32):79-87.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).