Several Types of B#-closed Sets in Ideal Nanotopological Spaces
Year 2020,
Issue: 32, 51 - 57, 30.09.2020
Raghavan Asokan
Ochanan Nethaji
Ilangovan Rajasekaran
Abstract
In this paper, we made an attempt to unveil to notions of nano B#g -closed sets and B#g-closed sets are introduce and their properties are discussed with
suitable examples. They are characterizations in the context of an ideal nanotopological spaces
.
References
- R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, New York, 1946.
- K. Kuratowski, Topology, Vol I. Academic Press (New York) 1966.
- R. Vaidyanathaswamy, The Localization Theory in Set Topology, Proc. Indian Acad. Sci. 20 (1945)
51-61.
- M. Parimala, T. Noiri, S. Jafari, New types of nano topological spaces via nano ideals,
https://www.researchgate.net/publication/315892279.
- M. Parimala, S. Jafari, On some new notions in nano ideal topological spaces, Eurasian Bulletin
of Mathematics 1(3) (2018) 85-93.
- I. Rajasekaran, O. Nethaji, A new form of some nano sets, Bulletin of the international mathe-
matical virtual institute 9(2) (2019) 355-360.
- Z. Pawlak, Rough sets, International journal of computer and Information Sciences 11(5) (1982)
341-356.
- M. L. Thivagar, C. Richard, On nano forms of weakly open sets, International Journal of Math-
ematics and Statistics Invention 1(1) (2013) 31-37.
- K. Bhuvaneshwari, K. Mythili Gnanapriya, Nano Generalized closed sets, International Journal
of Scientic and Research Publications 4(5) (2014) 1-3.
- K. Bhuvaneswari, K. Mythili Gnanapriya, On nano generalised pre closed sets and nano pre
generalised closed sets in nano topological spaces, International Journal of Innovative Research in
Science, Engineering and Technology 3(10) (2014) 16825-16829.
- K. Bhuvaneswari, A. Ezhilarasi, On nano semi-generalised and nano generalised-semi closed sets
in nano topological spaces, International Journal of Mathematics and Computer Applications
Research (IJMCAR) 4(3) (2014) 117-124.
- M. Parimala, S. Jafari, S. Murali, Nano ideal generalized closed sets in nano ideal topological
spaces, Annales Univ. Sci. Budapest 60 (2017) 3-11.
- O. Nethaji, R. Asokan, I. Rajasekaran, Novel concept of ideal nanotopological spaces, appear.
Year 2020,
Issue: 32, 51 - 57, 30.09.2020
Raghavan Asokan
Ochanan Nethaji
Ilangovan Rajasekaran
References
- R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, New York, 1946.
- K. Kuratowski, Topology, Vol I. Academic Press (New York) 1966.
- R. Vaidyanathaswamy, The Localization Theory in Set Topology, Proc. Indian Acad. Sci. 20 (1945)
51-61.
- M. Parimala, T. Noiri, S. Jafari, New types of nano topological spaces via nano ideals,
https://www.researchgate.net/publication/315892279.
- M. Parimala, S. Jafari, On some new notions in nano ideal topological spaces, Eurasian Bulletin
of Mathematics 1(3) (2018) 85-93.
- I. Rajasekaran, O. Nethaji, A new form of some nano sets, Bulletin of the international mathe-
matical virtual institute 9(2) (2019) 355-360.
- Z. Pawlak, Rough sets, International journal of computer and Information Sciences 11(5) (1982)
341-356.
- M. L. Thivagar, C. Richard, On nano forms of weakly open sets, International Journal of Math-
ematics and Statistics Invention 1(1) (2013) 31-37.
- K. Bhuvaneshwari, K. Mythili Gnanapriya, Nano Generalized closed sets, International Journal
of Scientic and Research Publications 4(5) (2014) 1-3.
- K. Bhuvaneswari, K. Mythili Gnanapriya, On nano generalised pre closed sets and nano pre
generalised closed sets in nano topological spaces, International Journal of Innovative Research in
Science, Engineering and Technology 3(10) (2014) 16825-16829.
- K. Bhuvaneswari, A. Ezhilarasi, On nano semi-generalised and nano generalised-semi closed sets
in nano topological spaces, International Journal of Mathematics and Computer Applications
Research (IJMCAR) 4(3) (2014) 117-124.
- M. Parimala, S. Jafari, S. Murali, Nano ideal generalized closed sets in nano ideal topological
spaces, Annales Univ. Sci. Budapest 60 (2017) 3-11.
- O. Nethaji, R. Asokan, I. Rajasekaran, Novel concept of ideal nanotopological spaces, appear.