Research Article
BibTex RIS Cite
Year 2021, Issue: 34, 20 - 27, 30.03.2021

Abstract

References

  • D. E. Knuth, The Art of Computer Programming, Seminumerical Algorithms, Addison-Wesley 2 (1981).
  • E. A. Bender, Partitions of Multisets, Discrete Mathematics (1974) 301-311. C. S. Calude, G. Paun, G. Rozenberg, A. Salomaa, Multiset Processing LNCS 2235, Springer Verlag (2001) 347-358.
  • A. Syropoulos, Mathematics of Multisets, In: Calude C.S., Paun G., Rozenberg G., Salomaa A. (eds) Multiset Processing. WMC 2000. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg 2235 (2001).
  • N. J. Wildberger, A New Look at Multisets, School of Mathematics, UNSW Sydney 2053 (2003).
  • D. Singh, A. M. Ibrahim, T. Yohanna, J. N. Singh, An Overview of The Application of Multiset, Novi Sad Journal of Mathematics 37 (2007) 73-92.
  • K. P. Girish, S. J. John, Rough Multisets and Information Multisystems, Advances in Decision Sciences Article ID 495392 2011 (2011) 17 pages.
  • R. R. Yager, On the Theory of Bags, International Journal of General Systems 13 (1986) 23-37.
  • S. P. Jena, S. K. Ghosh, B. K. Tripathy, On the Theory of Bags and Lists, Information Sciences 132 (2001) 241-254.
  • C. Brink, Multisets and the Algebra of Relevance logic, Non-Classical Logic 5 (1988) 75-95. K. P. Girish, S. J. John, Relations and Functions in Multiset Context, Information Sciences 179 (2009) 758-768.
  • U. Ulusu, E. Dündar, I-Lacunary Statistical Convergence of Sequences of Sets, Filomat 28(8) (2014) 1567-1574.
  • A. R. Benson, R. Kumar, A. Tomkins, Sequences of Sets, International Conference on Knowledge Discovery and Data Mining (2018) 19-23 London, United Kingdom.
  • H. Gumus, On Wijsman Ideal Convergent Set of Sequences Defined by an Orlicz Function, Filomat 30(13) (2016) 3501-3509.
  • O. Talo, Y. Sever, On Kuratowski I-Convergence of Sequences of Closed Sets, Filomat 31(4) (2017) 899-912.
  • M. Baronti, P. Papini, Convergence of Sequences of Sets, Methods of Functional Analysis in Approximation Theory 76 (1986) 133-155.
  • R. A. Wijsman, Convergence of Sequences of Convex Sets, Cones and Functions. II, Transactions of the American Mathematical Society 123(1) (1966) 32-45.
  • F. Nuray, B. E. Rhoades, Statistical Convergence of Sequences of Sets, Fasciculi Mathematici 49 (2012) 87-99.

Convergence of Multiset Sequences

Year 2021, Issue: 34, 20 - 27, 30.03.2021

Abstract

In this paper, we introduce the concept of the multiset sequence and its convergence. A few special examples of multiset sequences, e.g. a prime identifier, are also given. A metric is defined in multisets for statistical convergences of multiset sequences. Wijsman and Hausdorff convergence of multiset sequences are discussed.

References

  • D. E. Knuth, The Art of Computer Programming, Seminumerical Algorithms, Addison-Wesley 2 (1981).
  • E. A. Bender, Partitions of Multisets, Discrete Mathematics (1974) 301-311. C. S. Calude, G. Paun, G. Rozenberg, A. Salomaa, Multiset Processing LNCS 2235, Springer Verlag (2001) 347-358.
  • A. Syropoulos, Mathematics of Multisets, In: Calude C.S., Paun G., Rozenberg G., Salomaa A. (eds) Multiset Processing. WMC 2000. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg 2235 (2001).
  • N. J. Wildberger, A New Look at Multisets, School of Mathematics, UNSW Sydney 2053 (2003).
  • D. Singh, A. M. Ibrahim, T. Yohanna, J. N. Singh, An Overview of The Application of Multiset, Novi Sad Journal of Mathematics 37 (2007) 73-92.
  • K. P. Girish, S. J. John, Rough Multisets and Information Multisystems, Advances in Decision Sciences Article ID 495392 2011 (2011) 17 pages.
  • R. R. Yager, On the Theory of Bags, International Journal of General Systems 13 (1986) 23-37.
  • S. P. Jena, S. K. Ghosh, B. K. Tripathy, On the Theory of Bags and Lists, Information Sciences 132 (2001) 241-254.
  • C. Brink, Multisets and the Algebra of Relevance logic, Non-Classical Logic 5 (1988) 75-95. K. P. Girish, S. J. John, Relations and Functions in Multiset Context, Information Sciences 179 (2009) 758-768.
  • U. Ulusu, E. Dündar, I-Lacunary Statistical Convergence of Sequences of Sets, Filomat 28(8) (2014) 1567-1574.
  • A. R. Benson, R. Kumar, A. Tomkins, Sequences of Sets, International Conference on Knowledge Discovery and Data Mining (2018) 19-23 London, United Kingdom.
  • H. Gumus, On Wijsman Ideal Convergent Set of Sequences Defined by an Orlicz Function, Filomat 30(13) (2016) 3501-3509.
  • O. Talo, Y. Sever, On Kuratowski I-Convergence of Sequences of Closed Sets, Filomat 31(4) (2017) 899-912.
  • M. Baronti, P. Papini, Convergence of Sequences of Sets, Methods of Functional Analysis in Approximation Theory 76 (1986) 133-155.
  • R. A. Wijsman, Convergence of Sequences of Convex Sets, Cones and Functions. II, Transactions of the American Mathematical Society 123(1) (1966) 32-45.
  • F. Nuray, B. E. Rhoades, Statistical Convergence of Sequences of Sets, Fasciculi Mathematici 49 (2012) 87-99.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Suma Pachilangode 0000-0001-6764-6832

Sunil Jacob John 0000-0002-6333-2884

Publication Date March 30, 2021
Submission Date February 17, 2020
Published in Issue Year 2021 Issue: 34

Cite

APA Pachilangode, S., & John, S. J. (2021). Convergence of Multiset Sequences. Journal of New Theory(34), 20-27.
AMA Pachilangode S, John SJ. Convergence of Multiset Sequences. JNT. March 2021;(34):20-27.
Chicago Pachilangode, Suma, and Sunil Jacob John. “Convergence of Multiset Sequences”. Journal of New Theory, no. 34 (March 2021): 20-27.
EndNote Pachilangode S, John SJ (March 1, 2021) Convergence of Multiset Sequences. Journal of New Theory 34 20–27.
IEEE S. Pachilangode and S. J. John, “Convergence of Multiset Sequences”, JNT, no. 34, pp. 20–27, March 2021.
ISNAD Pachilangode, Suma - John, Sunil Jacob. “Convergence of Multiset Sequences”. Journal of New Theory 34 (March 2021), 20-27.
JAMA Pachilangode S, John SJ. Convergence of Multiset Sequences. JNT. 2021;:20–27.
MLA Pachilangode, Suma and Sunil Jacob John. “Convergence of Multiset Sequences”. Journal of New Theory, no. 34, 2021, pp. 20-27.
Vancouver Pachilangode S, John SJ. Convergence of Multiset Sequences. JNT. 2021(34):20-7.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).