The permanent function is not as stable as the determinant function under the elementary row operations. For example, adding a non-zero scalar multiple of a row to another row does not change the determinant of a matrix, but this operation changes its permanent. In this article, the variation in the permanent by applying the operation, which adds a scalar multiple of a row to another row, is examined. The relationship between the permanent of the matrix to which this operation is applied and the permanent of the initial matrix is given by a theorem. Finally, the paper inquires the need for further research.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Research Article |
Authors | |
Publication Date | March 31, 2023 |
Submission Date | September 22, 2022 |
Published in Issue | Year 2023 Issue: 42 |
As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC). |