Research Article
BibTex RIS Cite

On the Orbit Problem of Free Lie Algebras

Year 2023, Issue: 43, 83 - 91, 30.06.2023
https://doi.org/10.53570/jnt.1284897

Abstract

By operationalizing $F_{n}$ as a free Lie Algebra of finite rank $n$, this work considers the orbit problem for $F_{n}$. The orbit problem is the following: given an element $u\in F_{n}$ and a finitely generated subalgebra $H$ of $F_{n}$, does $H$ meet the orbit of $u$ under the automorphism group $Aut F_{n}$ of $F_{n}$? It is proven that the orbit problem is decidable for finite rank $n$, $n\geqslant2$. Furthermore, we solve a particular instance of the problem -- i.e., whether $H$ contains a primitive element of $F_{n}$. In addition, some applications are provided. Finally, the paper inquires the need for further research.

References

  • J. H. C. Whitehead, \emph{On Equivalent Sets of Elements in a Free Group}, Annals of Mathematics 37 (4) (1936) 782--800.
  • S. Gersten, \emph{On Whitehead’s Algorithm}, Bulletin of the American Mathematical Society 10 (2) (1984) 281--284.
  • P. V. Silva, P. Weil, \emph{Automorphic Orbits in Free Groups: Words Versus Subgroups}, International Journal of Algebra and Computation 20 (4) (2010) 561{--}590.
  • P. Brinkmann, \emph{Detecting Automorphic Orbits in Free Groups}, Journal of Algebra 324 (5) (2010) 1083--1097.
  • A. G. Myasnikov, V. Shpilrain, \emph{Automorphic Orbits in Free Groups}, Journal of Algebra 269 (1) (2003) 18--27.
  • D. Kozen, \emph{Complexity of Finitely Presented Algebras}, in: J. E. Hopcroft, E. P. Friedman, M. A. Harrison (Eds.), STOC '77: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, Colorado, 1977, pp. 164--177.
  • Y. Bahturin, A. Olshanskii, \emph{Filtrations and Distortion in Infinite-Dimensional Algebras}, Journal of Algebra 327 (1) (2011) 251--291
  • R. H. Fox, \emph{Free Dif and only iferential Calculus. I: Derivation in the Free Group Ring}, Annals of Mathematics 57 (3) (1953) 547--560.
  • V. Shpilrain, \emph{On the Rank of an Element of a Free Lie Algebras}, Proceedings of the American Mathematical Society 123 (5) (1995) 1303{--}1307.
  • P. M. Cohn, Free Rings and Their Relations, 2nd Edition, Academic Press, London, 1985.
  • A. A. Mikhalev, A. A. Zolotykh, \emph{Rank\; and\; Primitivity\; of\; Elements\; of\; Free\; Colour\; Lie\; (p-)Superalgebras}, International Journal of Algebra and Computation 4 (4) (1994) 617--656.
  • P. M. Cohn, \emph{Subalgebras of Free Associative Algebras}, Proceedings of the London Mathematical Society 14 (3) (1964) 618--632.
  • V. Drensky, \emph{Automorphisms of Relatively Free Algebras}, Communications in Algebra 18 (12) (1990) 4323--4351.
  • A. V. Yagzhev, \emph{Endomorphisms of Free Algebras}, Siberian Mathematical Journal 21 (1) (1980) 133--141.
  • G. P. Kukin, \emph{Primitive Elements of Free Lie Algebras}, Algebrai-Logika 9 (4) (1970) 458--472.
Year 2023, Issue: 43, 83 - 91, 30.06.2023
https://doi.org/10.53570/jnt.1284897

Abstract

References

  • J. H. C. Whitehead, \emph{On Equivalent Sets of Elements in a Free Group}, Annals of Mathematics 37 (4) (1936) 782--800.
  • S. Gersten, \emph{On Whitehead’s Algorithm}, Bulletin of the American Mathematical Society 10 (2) (1984) 281--284.
  • P. V. Silva, P. Weil, \emph{Automorphic Orbits in Free Groups: Words Versus Subgroups}, International Journal of Algebra and Computation 20 (4) (2010) 561{--}590.
  • P. Brinkmann, \emph{Detecting Automorphic Orbits in Free Groups}, Journal of Algebra 324 (5) (2010) 1083--1097.
  • A. G. Myasnikov, V. Shpilrain, \emph{Automorphic Orbits in Free Groups}, Journal of Algebra 269 (1) (2003) 18--27.
  • D. Kozen, \emph{Complexity of Finitely Presented Algebras}, in: J. E. Hopcroft, E. P. Friedman, M. A. Harrison (Eds.), STOC '77: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, Colorado, 1977, pp. 164--177.
  • Y. Bahturin, A. Olshanskii, \emph{Filtrations and Distortion in Infinite-Dimensional Algebras}, Journal of Algebra 327 (1) (2011) 251--291
  • R. H. Fox, \emph{Free Dif and only iferential Calculus. I: Derivation in the Free Group Ring}, Annals of Mathematics 57 (3) (1953) 547--560.
  • V. Shpilrain, \emph{On the Rank of an Element of a Free Lie Algebras}, Proceedings of the American Mathematical Society 123 (5) (1995) 1303{--}1307.
  • P. M. Cohn, Free Rings and Their Relations, 2nd Edition, Academic Press, London, 1985.
  • A. A. Mikhalev, A. A. Zolotykh, \emph{Rank\; and\; Primitivity\; of\; Elements\; of\; Free\; Colour\; Lie\; (p-)Superalgebras}, International Journal of Algebra and Computation 4 (4) (1994) 617--656.
  • P. M. Cohn, \emph{Subalgebras of Free Associative Algebras}, Proceedings of the London Mathematical Society 14 (3) (1964) 618--632.
  • V. Drensky, \emph{Automorphisms of Relatively Free Algebras}, Communications in Algebra 18 (12) (1990) 4323--4351.
  • A. V. Yagzhev, \emph{Endomorphisms of Free Algebras}, Siberian Mathematical Journal 21 (1) (1980) 133--141.
  • G. P. Kukin, \emph{Primitive Elements of Free Lie Algebras}, Algebrai-Logika 9 (4) (1970) 458--472.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Zeynep Yaptı Özkurt 0000-0001-9703-3463

Publication Date June 30, 2023
Submission Date April 19, 2023
Published in Issue Year 2023 Issue: 43

Cite

APA Yaptı Özkurt, Z. (2023). On the Orbit Problem of Free Lie Algebras. Journal of New Theory(43), 83-91. https://doi.org/10.53570/jnt.1284897
AMA Yaptı Özkurt Z. On the Orbit Problem of Free Lie Algebras. JNT. June 2023;(43):83-91. doi:10.53570/jnt.1284897
Chicago Yaptı Özkurt, Zeynep. “On the Orbit Problem of Free Lie Algebras”. Journal of New Theory, no. 43 (June 2023): 83-91. https://doi.org/10.53570/jnt.1284897.
EndNote Yaptı Özkurt Z (June 1, 2023) On the Orbit Problem of Free Lie Algebras. Journal of New Theory 43 83–91.
IEEE Z. Yaptı Özkurt, “On the Orbit Problem of Free Lie Algebras”, JNT, no. 43, pp. 83–91, June 2023, doi: 10.53570/jnt.1284897.
ISNAD Yaptı Özkurt, Zeynep. “On the Orbit Problem of Free Lie Algebras”. Journal of New Theory 43 (June 2023), 83-91. https://doi.org/10.53570/jnt.1284897.
JAMA Yaptı Özkurt Z. On the Orbit Problem of Free Lie Algebras. JNT. 2023;:83–91.
MLA Yaptı Özkurt, Zeynep. “On the Orbit Problem of Free Lie Algebras”. Journal of New Theory, no. 43, 2023, pp. 83-91, doi:10.53570/jnt.1284897.
Vancouver Yaptı Özkurt Z. On the Orbit Problem of Free Lie Algebras. JNT. 2023(43):83-91.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).