Research Article
BibTex RIS Cite

An Extension of the UEHL Distribution Based on the DUS Transformation

Year 2023, Issue: 44, 20 - 30, 30.09.2023
https://doi.org/10.53570/jnt.1317652

Abstract

In this study, we propose a new distribution based on the Dinesh, Umesh, and Sanjay (DUS) transformation by using the Unit Exponentiated Half-Logistic (UEHL) distribution as the baseline distribution, a member of the family of proportional hazard rate models. Moreover, we study several properties, such as moments, skewness, kurtosis, stress-strength reliability, and likelihood ratio ordering. Further, we discuss the statistical inference on the parameters of the proposed distribution by the maximum likelihood estimation (MLE) method. Besides, we conduct a simulation based on the new distribution to investigate the behavior of the maximum likelihood estimates in various conditions. Furthermore, we present a numerical example to show the performance of the distribution on a real-life data set. Finally, we discuss the need for further research.

References

  • D. P. Murthy, M. Xie, R. Jiang, Weibull Models, Wiley, New Jersey, 2004.
  • J. I. McCool, Using the Weibull Distribution: Reliability, Modeling, and Inference, Wiley, New Jersey, 2012.
  • M. Aslam, M. Azam, S. Balamurali, C. H. Jun, An Economic Design of a Group Sampling Plan for a Weibull Distribution Using a Bayesian Approach, Journal of Testing and Evaluation 43 (6) (2015) 1497–1503.
  • S. J. Almalki, S. Nadarajah, Modifications of the Weibull Distribution: A Review, Reliability Engineering & System Safety 124 (1) (2014) 32–55.
  • J. M. Carrasco, E. M. Ortega, G. M. Cordeiro, A Generalized Modified Weibull Distribution for Lifetime Modeling, Computational Statistics & Data Analysis 53 (2) (2008) 450–462.
  • H. Pham, C. D. Lai, On Recent Generalizations of the Weibull Distribution, IEEE Transactions on Reliability 56 (2007) (3) 454–458.
  • C. D. Lai, Generalized Weibull Distributions, Springer, Berlin, Heidelberg, 2013.
  • J. Dombi, T. Jonas, Z. E. Toth, G. Arva, The Omega Probability Distribution and Its Applications in Reliability Theory, Quality and Reliability Engineering International 35 (2) (2019) 600–626.
  • Ö. Özbilen, A. İ. Genç, A Bivariate Extension of the Omega Distribution for Two-Dimensional Proportional Data, Mathematica Slovaca 72 (6) (2022) 1605–1622.
  • J. I. Seo, S. B. Kang, Notes on the Exponentiated Half Logistic Distribution, Applied Mathematical Modelling 39 (21) (2015) 6491–6500.
  • W. Gui, Exponentiated Half Logistic Distribution: Different Estimation Methods and Joint Confidence Regions, Communications in Statistics - Simulation and Computation 46 (6) (2017) 4600–4617.
  • R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling Failure Time Data by Lehman Alternatives, Communications in Statistics-Theory and Methods 27 (4) (1998) 887–904.
  • G. M. Cordeiro, M. Castro. A New Family of Generalized Distributions, Journal of Statistical Computation and Simulation 81 (7) (2011) 883–898.
  • D. Kumar, U. Singh, S. K. Singh, A Method of Proposing New Distribution and Its Application to Bladder Cancer Patients Data, Journal of Statistics Applications & Probability Letters 2 (3) (2015) 235–245.
  • K. S. Deepthi, V. M. Chacko, An Upside-Down Bathtub-Shaped Failure Rate Model Using a DUS Transformation of Lomax Distribution, in: L. Cui, I. B. Frenkel, A. Lisnianski (Eds.), Stochastic Models in Reliability Engineering, CRC Press, Boca Raton, 2020, Ch. 6, pp. 81–100.
  • P. Kavya, M. Manoharan, On a Generalized Lifetime Model Using DUS Transformation, in: V. C. Joshua, S. R. S. Varadhan, V. M. Vishnevsky (Eds.), Applied Probability and Stochastic Processes, Springer, Singapore, 2020, pp. 281–291.
  • S. Maurya, A. Kaushik, S. Singh, U. Singh, A New Class of Distribution Having Decreasing, Increasing, and Bathtub-Shaped Failure Rate, Communications in Statistics-Theory and Methods 46 (20) (2017) 10359–10372.
  • K. Karakaya, İ. Kınacı, K. Coşkun, Y. Akdoğan, On the DUS-Kumaraswamy Distribution, Istatistik Journal of the Turkish Statistical Association 13 (1) (2021) 29–38.
  • S. B. Kang, J. I. Seo, Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-2 Censoring, Communications for Statistical Applications and Methods 18 (5) (2011) 657–666.
  • M. K. Rastogi, Y. M. Tripathi, Parameter and Reliability Estimation for an Exponentiated Half-Logistic Distribution Under Progressive Type-II Censoring, Journal of Statistical Computation and Simulation 84 (8) (2014) 1711–1727.
  • I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 7th edition, Academic Press, San Diego, 2007.
  • M. Nadar, A. Papadopoulos, F. Kızılaslan, Statistical Analysis for Kumaraswamy’s Distribution Based on Record Data, Statistical Papers 54 (2013) 355–369.
Year 2023, Issue: 44, 20 - 30, 30.09.2023
https://doi.org/10.53570/jnt.1317652

Abstract

References

  • D. P. Murthy, M. Xie, R. Jiang, Weibull Models, Wiley, New Jersey, 2004.
  • J. I. McCool, Using the Weibull Distribution: Reliability, Modeling, and Inference, Wiley, New Jersey, 2012.
  • M. Aslam, M. Azam, S. Balamurali, C. H. Jun, An Economic Design of a Group Sampling Plan for a Weibull Distribution Using a Bayesian Approach, Journal of Testing and Evaluation 43 (6) (2015) 1497–1503.
  • S. J. Almalki, S. Nadarajah, Modifications of the Weibull Distribution: A Review, Reliability Engineering & System Safety 124 (1) (2014) 32–55.
  • J. M. Carrasco, E. M. Ortega, G. M. Cordeiro, A Generalized Modified Weibull Distribution for Lifetime Modeling, Computational Statistics & Data Analysis 53 (2) (2008) 450–462.
  • H. Pham, C. D. Lai, On Recent Generalizations of the Weibull Distribution, IEEE Transactions on Reliability 56 (2007) (3) 454–458.
  • C. D. Lai, Generalized Weibull Distributions, Springer, Berlin, Heidelberg, 2013.
  • J. Dombi, T. Jonas, Z. E. Toth, G. Arva, The Omega Probability Distribution and Its Applications in Reliability Theory, Quality and Reliability Engineering International 35 (2) (2019) 600–626.
  • Ö. Özbilen, A. İ. Genç, A Bivariate Extension of the Omega Distribution for Two-Dimensional Proportional Data, Mathematica Slovaca 72 (6) (2022) 1605–1622.
  • J. I. Seo, S. B. Kang, Notes on the Exponentiated Half Logistic Distribution, Applied Mathematical Modelling 39 (21) (2015) 6491–6500.
  • W. Gui, Exponentiated Half Logistic Distribution: Different Estimation Methods and Joint Confidence Regions, Communications in Statistics - Simulation and Computation 46 (6) (2017) 4600–4617.
  • R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling Failure Time Data by Lehman Alternatives, Communications in Statistics-Theory and Methods 27 (4) (1998) 887–904.
  • G. M. Cordeiro, M. Castro. A New Family of Generalized Distributions, Journal of Statistical Computation and Simulation 81 (7) (2011) 883–898.
  • D. Kumar, U. Singh, S. K. Singh, A Method of Proposing New Distribution and Its Application to Bladder Cancer Patients Data, Journal of Statistics Applications & Probability Letters 2 (3) (2015) 235–245.
  • K. S. Deepthi, V. M. Chacko, An Upside-Down Bathtub-Shaped Failure Rate Model Using a DUS Transformation of Lomax Distribution, in: L. Cui, I. B. Frenkel, A. Lisnianski (Eds.), Stochastic Models in Reliability Engineering, CRC Press, Boca Raton, 2020, Ch. 6, pp. 81–100.
  • P. Kavya, M. Manoharan, On a Generalized Lifetime Model Using DUS Transformation, in: V. C. Joshua, S. R. S. Varadhan, V. M. Vishnevsky (Eds.), Applied Probability and Stochastic Processes, Springer, Singapore, 2020, pp. 281–291.
  • S. Maurya, A. Kaushik, S. Singh, U. Singh, A New Class of Distribution Having Decreasing, Increasing, and Bathtub-Shaped Failure Rate, Communications in Statistics-Theory and Methods 46 (20) (2017) 10359–10372.
  • K. Karakaya, İ. Kınacı, K. Coşkun, Y. Akdoğan, On the DUS-Kumaraswamy Distribution, Istatistik Journal of the Turkish Statistical Association 13 (1) (2021) 29–38.
  • S. B. Kang, J. I. Seo, Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-2 Censoring, Communications for Statistical Applications and Methods 18 (5) (2011) 657–666.
  • M. K. Rastogi, Y. M. Tripathi, Parameter and Reliability Estimation for an Exponentiated Half-Logistic Distribution Under Progressive Type-II Censoring, Journal of Statistical Computation and Simulation 84 (8) (2014) 1711–1727.
  • I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 7th edition, Academic Press, San Diego, 2007.
  • M. Nadar, A. Papadopoulos, F. Kızılaslan, Statistical Analysis for Kumaraswamy’s Distribution Based on Record Data, Statistical Papers 54 (2013) 355–369.
There are 22 citations in total.

Details

Primary Language English
Subjects Statistical Theory, Probability Theory
Journal Section Research Article
Authors

Murat Genç 0000-0002-6335-3044

Ömer Özbilen 0000-0001-6110-1911

Publication Date September 30, 2023
Submission Date June 20, 2023
Published in Issue Year 2023 Issue: 44

Cite

APA Genç, M., & Özbilen, Ö. (2023). An Extension of the UEHL Distribution Based on the DUS Transformation. Journal of New Theory(44), 20-30. https://doi.org/10.53570/jnt.1317652
AMA Genç M, Özbilen Ö. An Extension of the UEHL Distribution Based on the DUS Transformation. JNT. September 2023;(44):20-30. doi:10.53570/jnt.1317652
Chicago Genç, Murat, and Ömer Özbilen. “An Extension of the UEHL Distribution Based on the DUS Transformation”. Journal of New Theory, no. 44 (September 2023): 20-30. https://doi.org/10.53570/jnt.1317652.
EndNote Genç M, Özbilen Ö (September 1, 2023) An Extension of the UEHL Distribution Based on the DUS Transformation. Journal of New Theory 44 20–30.
IEEE M. Genç and Ö. Özbilen, “An Extension of the UEHL Distribution Based on the DUS Transformation”, JNT, no. 44, pp. 20–30, September 2023, doi: 10.53570/jnt.1317652.
ISNAD Genç, Murat - Özbilen, Ömer. “An Extension of the UEHL Distribution Based on the DUS Transformation”. Journal of New Theory 44 (September 2023), 20-30. https://doi.org/10.53570/jnt.1317652.
JAMA Genç M, Özbilen Ö. An Extension of the UEHL Distribution Based on the DUS Transformation. JNT. 2023;:20–30.
MLA Genç, Murat and Ömer Özbilen. “An Extension of the UEHL Distribution Based on the DUS Transformation”. Journal of New Theory, no. 44, 2023, pp. 20-30, doi:10.53570/jnt.1317652.
Vancouver Genç M, Özbilen Ö. An Extension of the UEHL Distribution Based on the DUS Transformation. JNT. 2023(44):20-3.

Cited By


Exponentiated UEHL Distribution: Properties and Applications
Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi
https://doi.org/10.53501/rteufemud.1388416


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).