Research Article
BibTex RIS Cite

Characterization of Two Specific Cases with New Operators in Ideal Topological Spaces

Year 2024, Issue: 46, 51 - 70, 29.03.2024
https://doi.org/10.53570/jnt.1418949

Abstract

This research deals with new operators $\wedge_{\Gamma}$, $\veebar_{\Gamma}$, and $\barwedge_{\Gamma}$, defined using $\Gamma$-local closure function and $\Psi_{\Gamma}$-operator in ideal topological spaces. It investigates the main features of these operators and their relationships with each other. The paper also analyzes their behaviors in some special ideals. Besides, it explores whether these operators preserve some set operations. Then, the study researches the properties of some special sets using these operators and proposes their characterizations. Additionally, it interprets some characterizations of the case cl$(\tau)\cap \Im=\{\emptyset\}$ and the closure compatibility by means of these new operators.

Supporting Institution

The Office of Scientific Research Projects Coordination at Canakkale Onsekiz Mart University

Project Number

FHD-2023-4505

References

  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • R. Vaidyanathaswamy, The localisation theory in set-topology, Proceedings of the Indian Academy of Sciences - Section A 20 (1944) 51-61.
  • D. Janković, T. R. Hamlett, New topologies from old via ideals, The American Mathematical Monthly 97 (4) (1990) 295-310.
  • T. Natkaniec, On I-continuity and I-semicontinuity points, Mathematica Slovaca 36 (3) (1986) 297-312.
  • M. Mukherjee, N. R. Bishwambhar, R. Sen, On extension of topological spaces in terms of ideals, Topology and its Applications 154 (18) (2007) 3167-3172.
  • T. R. Hamlett, D. Janković, Compatible extensions of ideals, Bollettino dell'Unione Matematica Italiana 7 (1992) 453-465.
  • E. Ekici, A. N. Tunç, On $PC^{\star}$-closed sets, Journal of the Chungcheong Mathematical Society 29 (4) (2016) 565-572.
  • E. Ekici, S. Özen, A generalized class of $\tau^{*}$ in ideal spaces, Filomat 27 (4) (2013) 529-535.
  • Sk. Selim, T. Noiri, S. Modak, Some set-operators on ideal topological spaces, The Aligarh Bulletin of Mathematics 40 (1) (2021) 41-53.
  • Sk. Selim, S. Modak, Md. M. Islam, Characterizations of Hayashi-Samuel spaces via boundary points, Communications in Advanced Mathematical Sciences 2 (3) (2019) 219-226.
  • S. Modak, S. Selim, Set operators and associated functions, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 (1) (2021) 456-467.
  • A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad Journal of Mathematics 43 (2) (2013) 139-149.
  • A. Pavlovi$\acute{c}$, Local function versus local closure function in ideal topological spaces, Filomat 30 (14) (2016) 3725-3731.
  • A. N. Tunç, S. Özen Yıldırım, A study on further properties of local closure functions, in: M. Öztürk (Ed.), 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), Muğla, 2020, pp. 123-123.
  • A. N. Tunç, S. Özen Yıldırım, New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences 1 (1) (2021) 50-59.
  • A. N. Tunç, S. Özen Yıldırım, $\Psi_{\Gamma}-C$ sets in ideal topological spaces, Turkish Journal of Mathematics and Computer Science 15 (1) (2023) 27-34.
  • A. N. Tunç, S. Özen Yıldırım, On a topological operator via local closure function, Turkish Journal of Mathematics and Computer Science 15 (2) (2023) 227-236.
  • N. S. Noorie, N. Goyal, On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology 52 (4) (2017) 226-228.
  • N. V. Veličko, H-closed topological spaces, American Mathematical Society Translations 78 (2) (1968) 102-118.
  • J. E. Joseph, $\theta$-closure and $\theta$-subclosed graphs, The Mathematical Chronicle 8 (1979) 99-117.
  • M. Caldas, S. Jafari, M. M. Kovár, Some properties of $\theta$-open sets, Divulgaciones Matemáticas 12 (2) (2004) 161-169.
  • N. Goyal, N. S. Noorie, $\theta$-closure and $T_{2\frac{1}{2}}$ spaces via ideals, Italian Journal of Pure and Applied Mathematics 41 (2019) 571-583.
Year 2024, Issue: 46, 51 - 70, 29.03.2024
https://doi.org/10.53570/jnt.1418949

Abstract

Project Number

FHD-2023-4505

References

  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • R. Vaidyanathaswamy, The localisation theory in set-topology, Proceedings of the Indian Academy of Sciences - Section A 20 (1944) 51-61.
  • D. Janković, T. R. Hamlett, New topologies from old via ideals, The American Mathematical Monthly 97 (4) (1990) 295-310.
  • T. Natkaniec, On I-continuity and I-semicontinuity points, Mathematica Slovaca 36 (3) (1986) 297-312.
  • M. Mukherjee, N. R. Bishwambhar, R. Sen, On extension of topological spaces in terms of ideals, Topology and its Applications 154 (18) (2007) 3167-3172.
  • T. R. Hamlett, D. Janković, Compatible extensions of ideals, Bollettino dell'Unione Matematica Italiana 7 (1992) 453-465.
  • E. Ekici, A. N. Tunç, On $PC^{\star}$-closed sets, Journal of the Chungcheong Mathematical Society 29 (4) (2016) 565-572.
  • E. Ekici, S. Özen, A generalized class of $\tau^{*}$ in ideal spaces, Filomat 27 (4) (2013) 529-535.
  • Sk. Selim, T. Noiri, S. Modak, Some set-operators on ideal topological spaces, The Aligarh Bulletin of Mathematics 40 (1) (2021) 41-53.
  • Sk. Selim, S. Modak, Md. M. Islam, Characterizations of Hayashi-Samuel spaces via boundary points, Communications in Advanced Mathematical Sciences 2 (3) (2019) 219-226.
  • S. Modak, S. Selim, Set operators and associated functions, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 (1) (2021) 456-467.
  • A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad Journal of Mathematics 43 (2) (2013) 139-149.
  • A. Pavlovi$\acute{c}$, Local function versus local closure function in ideal topological spaces, Filomat 30 (14) (2016) 3725-3731.
  • A. N. Tunç, S. Özen Yıldırım, A study on further properties of local closure functions, in: M. Öztürk (Ed.), 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), Muğla, 2020, pp. 123-123.
  • A. N. Tunç, S. Özen Yıldırım, New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences 1 (1) (2021) 50-59.
  • A. N. Tunç, S. Özen Yıldırım, $\Psi_{\Gamma}-C$ sets in ideal topological spaces, Turkish Journal of Mathematics and Computer Science 15 (1) (2023) 27-34.
  • A. N. Tunç, S. Özen Yıldırım, On a topological operator via local closure function, Turkish Journal of Mathematics and Computer Science 15 (2) (2023) 227-236.
  • N. S. Noorie, N. Goyal, On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology 52 (4) (2017) 226-228.
  • N. V. Veličko, H-closed topological spaces, American Mathematical Society Translations 78 (2) (1968) 102-118.
  • J. E. Joseph, $\theta$-closure and $\theta$-subclosed graphs, The Mathematical Chronicle 8 (1979) 99-117.
  • M. Caldas, S. Jafari, M. M. Kovár, Some properties of $\theta$-open sets, Divulgaciones Matemáticas 12 (2) (2004) 161-169.
  • N. Goyal, N. S. Noorie, $\theta$-closure and $T_{2\frac{1}{2}}$ spaces via ideals, Italian Journal of Pure and Applied Mathematics 41 (2019) 571-583.
There are 22 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Research Article
Authors

Ayşe Nur Tunç 0000-0003-3439-4223

Sena Özen Yıldırım 0000-0002-4460-2949

Project Number FHD-2023-4505
Early Pub Date March 28, 2024
Publication Date March 29, 2024
Submission Date January 12, 2024
Acceptance Date February 23, 2024
Published in Issue Year 2024 Issue: 46

Cite

APA Tunç, A. N., & Özen Yıldırım, S. (2024). Characterization of Two Specific Cases with New Operators in Ideal Topological Spaces. Journal of New Theory(46), 51-70. https://doi.org/10.53570/jnt.1418949
AMA Tunç AN, Özen Yıldırım S. Characterization of Two Specific Cases with New Operators in Ideal Topological Spaces. JNT. March 2024;(46):51-70. doi:10.53570/jnt.1418949
Chicago Tunç, Ayşe Nur, and Sena Özen Yıldırım. “Characterization of Two Specific Cases With New Operators in Ideal Topological Spaces”. Journal of New Theory, no. 46 (March 2024): 51-70. https://doi.org/10.53570/jnt.1418949.
EndNote Tunç AN, Özen Yıldırım S (March 1, 2024) Characterization of Two Specific Cases with New Operators in Ideal Topological Spaces. Journal of New Theory 46 51–70.
IEEE A. N. Tunç and S. Özen Yıldırım, “Characterization of Two Specific Cases with New Operators in Ideal Topological Spaces”, JNT, no. 46, pp. 51–70, March 2024, doi: 10.53570/jnt.1418949.
ISNAD Tunç, Ayşe Nur - Özen Yıldırım, Sena. “Characterization of Two Specific Cases With New Operators in Ideal Topological Spaces”. Journal of New Theory 46 (March 2024), 51-70. https://doi.org/10.53570/jnt.1418949.
JAMA Tunç AN, Özen Yıldırım S. Characterization of Two Specific Cases with New Operators in Ideal Topological Spaces. JNT. 2024;:51–70.
MLA Tunç, Ayşe Nur and Sena Özen Yıldırım. “Characterization of Two Specific Cases With New Operators in Ideal Topological Spaces”. Journal of New Theory, no. 46, 2024, pp. 51-70, doi:10.53570/jnt.1418949.
Vancouver Tunç AN, Özen Yıldırım S. Characterization of Two Specific Cases with New Operators in Ideal Topological Spaces. JNT. 2024(46):51-70.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).