Research Article
BibTex RIS Cite

Toward the Determination of Vietoris-like Polynomials

Year 2025, Issue: 51, 10 - 25, 30.06.2025
https://doi.org/10.53570/jnt.1651994

Abstract

This paper studies the relationship between polynomials and classical number sequences, focusing on their structural properties and mathematical significance. It explores a specific class of polynomials inspired by Vietoris' number sequences, referred to as Vietoris-like polynomials. The primary objective is to analyze their fundamental algebraic properties, recurrence relations, and special identities. The study employs algebraic methods to derive the recurrence relations and explicit formulas for these polynomials. Moreover, it establishes Catalan-like, Cassini-like, and d'Ocagne-like identities.

Supporting Institution

Scientific and Technological Research Council of Türkiye (TÜBİTAK)

Thanks

The second author is supported by the 2211-A Domestic Doctoral Fellowship by the Scientific and Technological Research Council of Türkiye (TÜBİTAK), Grant number: 1649B032103711.

References

  • T. Koshy, Fibonacci and Lucas numbers with applications, Vol. 2, John Wiley & Sons, 2018.
  • M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly 8 (4) (1970) 407-420.
  • M. Singh, O. Sikhwal, Y. Gupta, Generalized Fibonacci-Lucas polynomials, International Journal of Advanced Mathematical Sciences 2 (1) (2014) 81-87.
  • A. Boussayoud, M. Kerada, N. Harrouche, On the $k$-Lucas numbers and Lucas polynomials, Turkish Journal of Analysis and Number Theory 5 (4) (2017) 121-125.
  • Jr. V. E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials, The Fibonacci Quarterly 11 (3) (1973) 271-274.
  • P. Catarino, The $h(x)$-Fibonacci quaternion polynomials: Some combinatorial properties, Advances in Applied Clifford Algebras 26 (1) (2016) 71-79.
  • Jr. V. E. Hoggatt, M. Bicknell, Generalized Fibonacci polynomials, The Fibonacci Quarterly 11 (5) (1973) 457-465.
  • A. F. Horadam, Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly 23 (1) (1985) 7-20.
  • A. F. Horadam, Jacobsthal representation polynomials, Significance 35 (2) (1997) 137-148.
  • L. Vietoris, Über das vorzeichen gewisser trigonometrischer summen (in German), Springer, 1958.
  • L. Vietoris, Eine verallgemeinerung der gleichung $(n+ 1)!= n!(n+ 1)$ und zugehörige vermutete ungleichungen, Monatshefte für Mathematik 97 (2) (1984) 157-160.
  • I. Caçao, M. I. Falcao, H. Malonek, Hypercomplex polynomials, Vietoris' rational numbers and a related integer numbers sequence, Complex Analysis and Operator Theory 11 (5) (2017) 1059-1076.
  • M. I. Falcao, H. R. Malonek, A note on a one-parameter family of non-symmetric number triangles, Opuscula Mathematica 32 (4) (2012) 661-673.
  • N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences (1964), http://oeis.org/, Accessed 10 Jan 2025.
  • I. Caçao, M. I. Falcão, R. Helmuth, On generalized Vietoris' number sequences, Discrete Applied Mathematics 269 (2019) 77-85.
  • I. Caçao, M. I. Falcão, H. R. Malonek, On Vietoris' number sequence and combinatorial identities with quaternions, in: Vigo-Aguiar, J. (Ed.), 17th International Conference on Computational and Mathematical Methods in Science and Engineering, Almería, 2017, pp. 480-488.
  • P. Catarino, R. Almedia, On a quaternionic sequence with Vietoris' numbers, Filomat 35 (4) (2021) 1065-1086.
  • P. Catarino, R. Almeida, A note on Vietoris' number sequence, Mediterranean Journal of Mathematics 19 (1) (2022) 1-19.
  • S. Halıcı, Z. B. Gür, A note on weighted sums of Vietoris' sequence, Mathematica Montisnigri 61 (2024) 44-57.
  • I. Caçao, M. I. Falcão, H. R. Malonek, F. Miranda, G. Tomaz, On Appell-Vietoris polynomials, in: O. Gervasi, B. Murgante, C. Garau, D. C. Taniar, A. M. A. Rocha, M. N. Faginas Lago (Eds.), International Conference on Computational Science and Its Applications, Cham, 2024, pp. 302-316.
  • M. Özdemir, Introduction to hybrid numbers, Advances in Applied Clifford Algebras 28 (1) (2018) 11.
  • N. Gürses, G. Y. Saçlı, S. Yüce, On Vietoris' hybrid number sequence, Turkish Journal of Mathematics 48 (4) (2024) 658-672.

Year 2025, Issue: 51, 10 - 25, 30.06.2025
https://doi.org/10.53570/jnt.1651994

Abstract

References

  • T. Koshy, Fibonacci and Lucas numbers with applications, Vol. 2, John Wiley & Sons, 2018.
  • M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly 8 (4) (1970) 407-420.
  • M. Singh, O. Sikhwal, Y. Gupta, Generalized Fibonacci-Lucas polynomials, International Journal of Advanced Mathematical Sciences 2 (1) (2014) 81-87.
  • A. Boussayoud, M. Kerada, N. Harrouche, On the $k$-Lucas numbers and Lucas polynomials, Turkish Journal of Analysis and Number Theory 5 (4) (2017) 121-125.
  • Jr. V. E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials, The Fibonacci Quarterly 11 (3) (1973) 271-274.
  • P. Catarino, The $h(x)$-Fibonacci quaternion polynomials: Some combinatorial properties, Advances in Applied Clifford Algebras 26 (1) (2016) 71-79.
  • Jr. V. E. Hoggatt, M. Bicknell, Generalized Fibonacci polynomials, The Fibonacci Quarterly 11 (5) (1973) 457-465.
  • A. F. Horadam, Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly 23 (1) (1985) 7-20.
  • A. F. Horadam, Jacobsthal representation polynomials, Significance 35 (2) (1997) 137-148.
  • L. Vietoris, Über das vorzeichen gewisser trigonometrischer summen (in German), Springer, 1958.
  • L. Vietoris, Eine verallgemeinerung der gleichung $(n+ 1)!= n!(n+ 1)$ und zugehörige vermutete ungleichungen, Monatshefte für Mathematik 97 (2) (1984) 157-160.
  • I. Caçao, M. I. Falcao, H. Malonek, Hypercomplex polynomials, Vietoris' rational numbers and a related integer numbers sequence, Complex Analysis and Operator Theory 11 (5) (2017) 1059-1076.
  • M. I. Falcao, H. R. Malonek, A note on a one-parameter family of non-symmetric number triangles, Opuscula Mathematica 32 (4) (2012) 661-673.
  • N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences (1964), http://oeis.org/, Accessed 10 Jan 2025.
  • I. Caçao, M. I. Falcão, R. Helmuth, On generalized Vietoris' number sequences, Discrete Applied Mathematics 269 (2019) 77-85.
  • I. Caçao, M. I. Falcão, H. R. Malonek, On Vietoris' number sequence and combinatorial identities with quaternions, in: Vigo-Aguiar, J. (Ed.), 17th International Conference on Computational and Mathematical Methods in Science and Engineering, Almería, 2017, pp. 480-488.
  • P. Catarino, R. Almedia, On a quaternionic sequence with Vietoris' numbers, Filomat 35 (4) (2021) 1065-1086.
  • P. Catarino, R. Almeida, A note on Vietoris' number sequence, Mediterranean Journal of Mathematics 19 (1) (2022) 1-19.
  • S. Halıcı, Z. B. Gür, A note on weighted sums of Vietoris' sequence, Mathematica Montisnigri 61 (2024) 44-57.
  • I. Caçao, M. I. Falcão, H. R. Malonek, F. Miranda, G. Tomaz, On Appell-Vietoris polynomials, in: O. Gervasi, B. Murgante, C. Garau, D. C. Taniar, A. M. A. Rocha, M. N. Faginas Lago (Eds.), International Conference on Computational Science and Its Applications, Cham, 2024, pp. 302-316.
  • M. Özdemir, Introduction to hybrid numbers, Advances in Applied Clifford Algebras 28 (1) (2018) 11.
  • N. Gürses, G. Y. Saçlı, S. Yüce, On Vietoris' hybrid number sequence, Turkish Journal of Mathematics 48 (4) (2024) 658-672.
There are 22 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Nurten Gürses 0000-0001-8407-854X

Duygu Çağlar Çay 0000-0003-2036-9684

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date March 5, 2025
Acceptance Date May 12, 2025
Published in Issue Year 2025 Issue: 51

Cite

APA Gürses, N., & Çağlar Çay, D. (2025). Toward the Determination of Vietoris-like Polynomials. Journal of New Theory(51), 10-25. https://doi.org/10.53570/jnt.1651994
AMA Gürses N, Çağlar Çay D. Toward the Determination of Vietoris-like Polynomials. JNT. June 2025;(51):10-25. doi:10.53570/jnt.1651994
Chicago Gürses, Nurten, and Duygu Çağlar Çay. “Toward the Determination of Vietoris-Like Polynomials”. Journal of New Theory, no. 51 (June 2025): 10-25. https://doi.org/10.53570/jnt.1651994.
EndNote Gürses N, Çağlar Çay D (June 1, 2025) Toward the Determination of Vietoris-like Polynomials. Journal of New Theory 51 10–25.
IEEE N. Gürses and D. Çağlar Çay, “Toward the Determination of Vietoris-like Polynomials”, JNT, no. 51, pp. 10–25, June2025, doi: 10.53570/jnt.1651994.
ISNAD Gürses, Nurten - Çağlar Çay, Duygu. “Toward the Determination of Vietoris-Like Polynomials”. Journal of New Theory 51 (June2025), 10-25. https://doi.org/10.53570/jnt.1651994.
JAMA Gürses N, Çağlar Çay D. Toward the Determination of Vietoris-like Polynomials. JNT. 2025;:10–25.
MLA Gürses, Nurten and Duygu Çağlar Çay. “Toward the Determination of Vietoris-Like Polynomials”. Journal of New Theory, no. 51, 2025, pp. 10-25, doi:10.53570/jnt.1651994.
Vancouver Gürses N, Çağlar Çay D. Toward the Determination of Vietoris-like Polynomials. JNT. 2025(51):10-25.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).