Research Article
BibTex RIS Cite
Year 2018, , 355 - 370, 01.01.2018
https://doi.org/10.18596/jotcsa.358609

Abstract

References

  • 1. Anastas PT, Kirchhoff MM. Origins, Current Status, and Future Challenges of Green Chemistry †. Acc Chem Res. 2002;35(9):686‑94.
  • 2. Clark JH. Green chemistry: challenges and opportunities. Green Chem. 1999;1(1):1‑8.
  • 3. R S. Catalysis and Pollution Prevention. Chemistry & Industry. 1997; 1:12-15.
  • 4. Abba MO, Gonzalez-DelaCruz VM, Colón G, Sebti S, Caballero A. In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Appl Catal B Environ. 2014 ; 150‑151 :459‑65.
  • 5. Hassine A, Sebti S, Solhy A, Zahouily M, Len C, Hedhili MN, et al. Palladium supported on natural phosphate: Catalyst for Suzuki coupling reactions in water. Appl Catal Gen. 2013 ; 450 :13‑8.
  • 6. Dakkach M, Atlamsani A, Sebti S. Le phosphate naturel modifié au vanadium : un nouveau catalyseur pour l’oxydation des cycloalcanones et des α-cétols en présence de l’oxygène moléculaire. Comptes Rendus Chim. 2012;15(6):482‑92.
  • 7. Zahouily M, Salah M, Bahlaouane B, Rayadh A, Houmam A, Hamed EA, et al. Solid catalysts for the production of fine chemicals: the use of natural phosphate alone and doped base catalysts for the synthesis of unsaturated arylsulfones. Tetrahedron. 2004;60(7):1631‑5.
  • 8. Zahouily M, Bahlaouan B, Rayadh A, Sebti S. Natural phosphate and potassium fluoride doped natural phosphate: efficient catalysts for the construction of a carbon–nitrogen bond. Tetrahedron Lett. 2004;45(21):4135‑8.
  • 9. Alahiane A, Rochdi A, Taourirte M, Redwane N, Sebti S, Lazrek H. Natural phosphate as Lewis acid catalyst: a simple and convenient method for acyclonucleoside synthesis. Tetrahedron Lett. 2001;42(21):3579‑81.
  • 10. Wen C, Cui Y, Chen X, Zong B, Dai W-L. Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts. Appl Catal B Environ. 2015; 162:483‑93.
  • 11. Maleki B, Barat Nam Chalaki S, Sedigh Ashrafi S, Rezaee Seresht E, Moeinpour F, Khojastehnezhad A, et al. Caesium carbonate supported on hydroxyapatite-encapsulated Ni 0.5 Zn 0.5 Fe 2 O 4 nanocrystallites as a novel magnetically basic catalyst for the one-pot synthesis of pyrazolo[1,2-b] phthalazine-5,10-diones: Nanocatalyst for synthesis of pyrazolo[1,2-b] phthalazine-5,10-diones. Appl Organomet Chem. 2015;29(5):290‑5.
  • 12. Peeters A, Claes L, Geukens I, Stassen I, De Vos D. Alcohol amination with heterogeneous ruthenium hydroxyapatite catalysts. Appl Catal Gen. 2014; 469:191‑7.
  • 13. Razavi N, Akhlaghinia B. Hydroxyapatite nanoparticles (HAP NPs): a green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media. New J Chem. 2016;40(1):447‑57.
  • 14. El Badaoui H, Bazi F, Tahir R, Lazrek HB, Sebti S. Synthesis of 3,4-dihydropyrimidin-2-ones catalysed by fluorapatite doped with metal halides. Catal Commun. 2005;6(7):455‑8.
  • 15. Mulla SAR, Chavan SS, Pathan MY, Inamdar SM, Shaikh TMY. Ligand-, base-, co-catalyst-free copper fluorapatite (CuFAP) as a versatile, ecofriendly, heterogeneous and reusable catalyst for an efficient homocoupling of arylboronic acid at ambient reaction conditions. RSC Adv. 2015;5(31):24675‑80.
  • 16. Mulla SAR, Inamdar SM, Pathan MY, Chavan SS. Ligand free, highly efficient synthesis of diaryl ether over copper fluorapatite as heterogeneous reusable catalyst. Tetrahedron Lett. 2012;53(14):1826‑9.
  • 17. Geen G, Evans J, Vong A. Pyrans and Their Benzo Derivatives Synthesis: In Comprehensive Heterocyclic Chemistry II; Oxford, UK: Pergamon Press; 1995.
  • 18. Jain S, Rajguru D, Keshwal BS, Acharya AD. Solvent-Free Green and Efficient One-Pot Synthesis of Dihydropyrano[3,2-c]chromene Derivatives. ISRN Org Chem. 2013; 2013:1‑5.
  • 19. Bonsignore L, Loy G, Secci D, Calignano A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur J Med Chem. 1993;28(6):517‑20.
  • 20. Kostova I. New lanthanide complexes of 4-methyl-7-hydroxycoumarin and their pharmacological activity. Eur J Med Chem. 2001;36(4):339‑47.
  • 21. Chohan ZH, Shaikh AU, Rauf A, Supuran CT. Antibacterial, antifungal and cytotoxic properties of novel N-substituted sulfonamides from 4-hydroxycoumarin. J Enzyme Inhib Med Chem. 2006;21(6):741‑8.
  • 22. Zhao H, Neamati N, Hong H, Mazumder A, Wang S, Sunder S, et al. Coumarin-Based Inhibitors of HIV Integrase 1. J Med Chem. 1997;40(2):242‑9.
  • 23. Khoobi M, Ma’mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, et al. One-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes using inorganic–organic hybrid magnetic nanocatalyst in water. J Mol Catal Chem. 2012; 359:74‑80.
  • 24. Fotouhi L, Heravi MM, Fatehi A, Bakhtiari K. Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyran derivatives. Tetrahedron Lett. juill 2007;48(31):5379‑81.
  • 25. Kidwai M, Saxena S. Convenient Preparation of Pyrano Benzopyranes in Aqueous Media. Synth Commun. 2006;36(18):2737‑42.
  • 26. Tu S-J, Jiang H, Zhuang Q-Y, Miao C-B, Shi D, Wang X-S, et al. One-pot synthesis of 2-amimo-3-cyano-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-benzo[b]pyran under ultrasonic irradiation without catalyst. Chin J Org Chem. 2003; 23:488‑90.
  • 27. Shaker RM. Synthesis and reactions of some new 4H-pyrano[3,2-c] benzopyran-5-one derivatives and their potential biological activities. Pharm. 1996;51(3):148‑51.
  • 28. Heravi MM, Jani BA, Derikvand F, Bamoharram FF, Oskooie HA. Three components, one-pot synthesis of dihydropyrano[3,2-c] chromene derivatives in the presence of H6P2W18O62·18H2O as a green and recyclable catalyst. Catal Commun. 2008;10(3):272‑5.
  • 29. Khurana JM, Kumar S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett. 2009;50(28):4125‑7.
  • 30. Mehrabi H, Kazemi-Mireki M. CuO nanoparticles: An efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes. Chin Chem Lett. 2011;22(12):1419‑22.
  • 31. Zheng J, Li Y-Q. One-pot synthesis of tetrahydrobenzo[b]pyran and dihydropyrano[c]chromene derivatives in aqueous media by using trisodium citrate as a green catalyst. Arch Appl Sci Res. 2011;3.
  • 32. Mehrabi H, Abusaidi H. Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. J Iran Chem Soc. 2010;7(4):890‑4.
  • 33. Heravi MM, Zakeri M, Mohammadi N. Morpholine Catalyzed One-pot Multicomponent Synthesis of Compounds Containing Chromene Core in Water. Chin J Chem. 2011;29(6):1163‑6.
  • 34. Ranjbar-Karimi R, Hashemi-Uderji S, Mousavi M. Selectfluor promoted environmental-friendly synthesis of 2H-chromen-2-one derivatives under various reaction conditions. Journal of the Iranian Chemical Society. 2011;8(1):193-197.
  • 35. Shi D, Wang J, Zhuang Q-Y, Wang X-S. Three-component one-pot synthesis of 1,6-dioxa-5-oxo-1,4,5,6- tetrahydrophenanthrene derivatives in aqueous media. Chin J Org Chem. 2006; 26:643‑7.
  • 36. Shaabani A, Samadi S, Badri Z, Rahmati A. Ionic Liquid Promoted Efficient and Rapid One-pot Synthesis of Pyran Annulated Heterocyclic Systems. Catal Lett. 2005;104(1‑2):39‑43.
  • 37. Wang L-M, Shao J-H, Tian H, Wang Y-H, Liu B. Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. J Fluor Chem. 2006;127(1):97‑100.
  • 38. Hekmatshoar R, Majedi S, Bakhtiari K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catal Commun. 2008;9(2):307‑10.
  • 39. Mohammadi Ziarani G, Badiei A, Azizi M, Zarabadi P. Synthesis of 3,4-Dihydropyrano[c]Chromene Derivatives Using Sulfonic Acid Functionalized Silica (SiO2PrSO3H). Iran J Chem Chem Eng IJCCE. 2011;30(2):59‑65.
  • 40. Ziarani GM, Abbasi A, Badiei A, Aslani Z. An Efficient Synthesis of Tetrahydrobenzo[ b ]pyran Derivatives Using Sulfonic Acid Functionalized Silica as an Efficient Catalyst. E-J Chem. 2011;8(1):293‑9.
  • 41. Wang H-J, Lu J, Zhang Z-H. Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c] chromene derivatives. Monatshefte Für Chem - Chem Mon. 2010;141(10):1107‑12.
  • 42. Nagabhushana H, Sandeep Saundalkar S, Muralidhar L, Nagabhushana BM, Girija CR, Nagaraja D, et al. α-Fe2O3 nanoparticles: An efficient, inexpensive catalyst for the one-pot preparation of 3,4-dihydropyrano[c]chromenes. Chin Chem Lett. 2011;22(2):143‑6.
  • 43. Prasanna TSR, Raju KM. Silica Gel Promoted Mild, Efficient and Inexpensive Protocol for the Preparation of 3,4-dihydropyrano[c]chromenes. J Korean Chem Soc. 20 août 2011;55(4):662‑5.
  • 44. Tabatabaeian K, Heidari H, Mamaghani M, Mahmoodi NO. Ru(II) complexes bearing tertiary phosphine ligands: a novel and efficient homogeneous catalyst for one-pot synthesis of dihydropyrano[3,2-c] chromene and tetrahydrobenzo[b]pyran derivatives: Ru(II)-catalyzed synthesis of dihydropyrano[c]chromene derivatives. Appl Organomet Chem. 2012;26(2):56‑61.
  • 45. Brahmachari G, Banerjee B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4 H -pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustain Chem Eng. 3 mars 2014;2(3):411‑22.
  • 46. Shitole BV, Shitole NV, Shingare MS, Kakde GK. An efficient one pot three-component synthesis of dihydropyrano[3,2-c] chromenes using ammonium metavanadate as catalyst. Curr Chem Lett. 2016;137‑44.
  • 47. Hazeri N, Maghsoodlou MT, Mir F, Kangani M, Saravani H, Molashahi E. An efficient one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using starch solution as catalyst. Chin J Catal. 2014;35(3):391‑5.
  • 48. Patel DS, Avalani JR, Raval DK. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry. J Saudi Chem Soc. 2016;20:S401‑5.
  • 49. Niknam K, Jamali A. Silica-Bonded N-Propylpiperazine Sodium n-Propionate as Recyclable Basic Catalyst for Synthesis of 3,4-Dihydropyrano[c]chromene Derivatives and Biscoumarins. Chin J Catal. 2012;33(11‑12):1840‑9.
  • 50. Safaei-Ghomi J, Eshteghal F, Ghasemzadeh MA. Solvent-free synthesis of dihydropyrano [3,2-c]chromene and biscoumarin derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Acta Chim Slov. 2014;61(4):703‑8.
  • 51. Kanakaraju S, Prasanna B, Basavoju S, Chandramouli GVP. Ammonium acetate catalyzed an efficient one-pot three component synthesis of pyrano[3,2- c ]chromene derivatives. Arab J Chem. 2017;10:S2705‑13.
  • 52. Khan AT, Lal M, Ali S, Khan MM. One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett. 2011;52(41):5327‑32.
  • 53. Shitole NV, Shitole BV, Kakde GK. Disodium Phosphate: A Highly Efficient Catalyst for One-Pot Synthesis of Substituted 3,4-Dihydropyrano[3,2-C]Chromenes. Orbital - Electron J Chem. 2017;9(3):131-4.
  • 54. Abdolmohammadi S, Balalaie S. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Lett. avr 2007;48(18):3299‑303.
  • 55. Bahammou I, Esaady A, Boukhris S, Ghailane R, Habbadi N, Hassikou A, et al. Direct use of mineral fertilizers MAP, DAP, and TSP as heterogeneous catalysts in organic reactions. Mediterr J Chem. 2016;5(6):615‑23.
  • 56. Sibous S, Ghailane T, Houda S, Ghailane R, Boukhris S, Souizi A. Green and efficient method for the synthesis of 1,5-benzodiazipines using phosphate fertilizers as catalysts under free solvent. Mediterr J Chem. 2017;6(3):53‑9.
  • 57. Sibous S, Boukhris S, Ghailane R, Habbadi N, Hassikou A, Souizi A. Easy synthesis of 3,4-dihydropyrimidin -2-(1H)-ones using phosphate fertilizers MAP, DAP AND TSP as efficient catalysts. J Turk Chem Soc Sect Chem. 2017; 4(2): 477-88.
  • 58. Sheikhhosseini E, Sattaei Mokhtari T, Faryabi M, Rafiepour A, Soltaninejad S. Iron Ore Pellet, A Natural and Reusable Catalyst for Synthesis of Pyrano[2,3-d] pyrimidine and Dihydropyrano[c]chromene Derivatives in Aqueous Media. Iran J Chem Chem Eng IJCCE. 2016;35(1):43‑50.
  • 59. Sheikhhosseini E, Ghazanfari D, Nezamabadi V. A new method for synthesis of tetrahydrobenzo[b]pyrans and dihydropyrano[c]chromenes using p-dodecylbenzenesulfonic acid as catalyst in water. Iran J Catal. 2013;3(4):197‑201.
  • 60. Irani, S, Maghsoodlou, MT, Hazeri, Nourallah. Piperidine, an efficient base catalyst for the one-pot synthesis of 3,4-dihydropyrano[3,2-c]chromene derivatives. NISCAIR-CSIR,. 2017;649‑55.
  • 61. Maleki B. Green Synthesis of bis -Coumarin and Dihydropyrano[3,2-c]chromene Derivatives Catalyzed by o-Benzenedisulfonimide. Org Prep Proced Int. 2016;48(3):303‑18.
  • 62. Chen L, Lin J, Chen B, Zhao L. Sodium ethylene diamine tetraacetate catalyzed synthesis of chromene derivatives via multi-component reactions at low catalyst loading. Res Chem Intermed. 2017;43(11):6691‑700.
  • 63. Abaszadeh M, Seifi M. Three-Component Synthesis of Mono and Bis 4,5-Dihydropyrano[3,2-C]Chromenes and 4,5- Dihydropyran[4,3-B]Pyrans Catalyzed by Sodium Benzenesulfinates as a Green Organocatalyst. Acta Chem Iasi. 2017; 25(1):38 -50

A Green and Efficient Method for the Synthesis of 3,4- Dihydropyrano[c]chromene using Phosphate Fertilizers (MAP, DAP and TSP) as Heterogeneous Catalysts

Year 2018, , 355 - 370, 01.01.2018
https://doi.org/10.18596/jotcsa.358609

Abstract

This article presents a
simple and practical method for the synthesis of 3,4-dihydropyrano[c]chromene,
which are heterocyclic compounds possessing a wide range of biological
properties. They have been obtained by the condensation of an aromatic
aldehyde, malononitrile and 4-hydroxycoumarin in presence of phosphate
fertilizers (MAP, DAP and TSP) as heterogeneous catalyst and ethanol as an
ecological solvent that makes this procedure environmentally friendly. The aim
of this study is the investigation of their catalytic activities through the
determination of the optimum conditions, which are the reaction time, the mass
of the catalyst used, the nature of the solvent and its appropriate volume.
These optimum conditions are the mean ones in the catalytic efficiency and they
permit to obtain better yields with shorter reaction times. The developed method
herein presents a green strategy which is characterized by mild reaction
conditions, high to excellent yields, short reaction times and easy catalyst
recovery. In addition, the experiment shows that these catalysts can be reused
successfully several times without significant loss of their catalytic
activity. 

References

  • 1. Anastas PT, Kirchhoff MM. Origins, Current Status, and Future Challenges of Green Chemistry †. Acc Chem Res. 2002;35(9):686‑94.
  • 2. Clark JH. Green chemistry: challenges and opportunities. Green Chem. 1999;1(1):1‑8.
  • 3. R S. Catalysis and Pollution Prevention. Chemistry & Industry. 1997; 1:12-15.
  • 4. Abba MO, Gonzalez-DelaCruz VM, Colón G, Sebti S, Caballero A. In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Appl Catal B Environ. 2014 ; 150‑151 :459‑65.
  • 5. Hassine A, Sebti S, Solhy A, Zahouily M, Len C, Hedhili MN, et al. Palladium supported on natural phosphate: Catalyst for Suzuki coupling reactions in water. Appl Catal Gen. 2013 ; 450 :13‑8.
  • 6. Dakkach M, Atlamsani A, Sebti S. Le phosphate naturel modifié au vanadium : un nouveau catalyseur pour l’oxydation des cycloalcanones et des α-cétols en présence de l’oxygène moléculaire. Comptes Rendus Chim. 2012;15(6):482‑92.
  • 7. Zahouily M, Salah M, Bahlaouane B, Rayadh A, Houmam A, Hamed EA, et al. Solid catalysts for the production of fine chemicals: the use of natural phosphate alone and doped base catalysts for the synthesis of unsaturated arylsulfones. Tetrahedron. 2004;60(7):1631‑5.
  • 8. Zahouily M, Bahlaouan B, Rayadh A, Sebti S. Natural phosphate and potassium fluoride doped natural phosphate: efficient catalysts for the construction of a carbon–nitrogen bond. Tetrahedron Lett. 2004;45(21):4135‑8.
  • 9. Alahiane A, Rochdi A, Taourirte M, Redwane N, Sebti S, Lazrek H. Natural phosphate as Lewis acid catalyst: a simple and convenient method for acyclonucleoside synthesis. Tetrahedron Lett. 2001;42(21):3579‑81.
  • 10. Wen C, Cui Y, Chen X, Zong B, Dai W-L. Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts. Appl Catal B Environ. 2015; 162:483‑93.
  • 11. Maleki B, Barat Nam Chalaki S, Sedigh Ashrafi S, Rezaee Seresht E, Moeinpour F, Khojastehnezhad A, et al. Caesium carbonate supported on hydroxyapatite-encapsulated Ni 0.5 Zn 0.5 Fe 2 O 4 nanocrystallites as a novel magnetically basic catalyst for the one-pot synthesis of pyrazolo[1,2-b] phthalazine-5,10-diones: Nanocatalyst for synthesis of pyrazolo[1,2-b] phthalazine-5,10-diones. Appl Organomet Chem. 2015;29(5):290‑5.
  • 12. Peeters A, Claes L, Geukens I, Stassen I, De Vos D. Alcohol amination with heterogeneous ruthenium hydroxyapatite catalysts. Appl Catal Gen. 2014; 469:191‑7.
  • 13. Razavi N, Akhlaghinia B. Hydroxyapatite nanoparticles (HAP NPs): a green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media. New J Chem. 2016;40(1):447‑57.
  • 14. El Badaoui H, Bazi F, Tahir R, Lazrek HB, Sebti S. Synthesis of 3,4-dihydropyrimidin-2-ones catalysed by fluorapatite doped with metal halides. Catal Commun. 2005;6(7):455‑8.
  • 15. Mulla SAR, Chavan SS, Pathan MY, Inamdar SM, Shaikh TMY. Ligand-, base-, co-catalyst-free copper fluorapatite (CuFAP) as a versatile, ecofriendly, heterogeneous and reusable catalyst for an efficient homocoupling of arylboronic acid at ambient reaction conditions. RSC Adv. 2015;5(31):24675‑80.
  • 16. Mulla SAR, Inamdar SM, Pathan MY, Chavan SS. Ligand free, highly efficient synthesis of diaryl ether over copper fluorapatite as heterogeneous reusable catalyst. Tetrahedron Lett. 2012;53(14):1826‑9.
  • 17. Geen G, Evans J, Vong A. Pyrans and Their Benzo Derivatives Synthesis: In Comprehensive Heterocyclic Chemistry II; Oxford, UK: Pergamon Press; 1995.
  • 18. Jain S, Rajguru D, Keshwal BS, Acharya AD. Solvent-Free Green and Efficient One-Pot Synthesis of Dihydropyrano[3,2-c]chromene Derivatives. ISRN Org Chem. 2013; 2013:1‑5.
  • 19. Bonsignore L, Loy G, Secci D, Calignano A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur J Med Chem. 1993;28(6):517‑20.
  • 20. Kostova I. New lanthanide complexes of 4-methyl-7-hydroxycoumarin and their pharmacological activity. Eur J Med Chem. 2001;36(4):339‑47.
  • 21. Chohan ZH, Shaikh AU, Rauf A, Supuran CT. Antibacterial, antifungal and cytotoxic properties of novel N-substituted sulfonamides from 4-hydroxycoumarin. J Enzyme Inhib Med Chem. 2006;21(6):741‑8.
  • 22. Zhao H, Neamati N, Hong H, Mazumder A, Wang S, Sunder S, et al. Coumarin-Based Inhibitors of HIV Integrase 1. J Med Chem. 1997;40(2):242‑9.
  • 23. Khoobi M, Ma’mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, et al. One-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes using inorganic–organic hybrid magnetic nanocatalyst in water. J Mol Catal Chem. 2012; 359:74‑80.
  • 24. Fotouhi L, Heravi MM, Fatehi A, Bakhtiari K. Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyran derivatives. Tetrahedron Lett. juill 2007;48(31):5379‑81.
  • 25. Kidwai M, Saxena S. Convenient Preparation of Pyrano Benzopyranes in Aqueous Media. Synth Commun. 2006;36(18):2737‑42.
  • 26. Tu S-J, Jiang H, Zhuang Q-Y, Miao C-B, Shi D, Wang X-S, et al. One-pot synthesis of 2-amimo-3-cyano-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-benzo[b]pyran under ultrasonic irradiation without catalyst. Chin J Org Chem. 2003; 23:488‑90.
  • 27. Shaker RM. Synthesis and reactions of some new 4H-pyrano[3,2-c] benzopyran-5-one derivatives and their potential biological activities. Pharm. 1996;51(3):148‑51.
  • 28. Heravi MM, Jani BA, Derikvand F, Bamoharram FF, Oskooie HA. Three components, one-pot synthesis of dihydropyrano[3,2-c] chromene derivatives in the presence of H6P2W18O62·18H2O as a green and recyclable catalyst. Catal Commun. 2008;10(3):272‑5.
  • 29. Khurana JM, Kumar S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett. 2009;50(28):4125‑7.
  • 30. Mehrabi H, Kazemi-Mireki M. CuO nanoparticles: An efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes. Chin Chem Lett. 2011;22(12):1419‑22.
  • 31. Zheng J, Li Y-Q. One-pot synthesis of tetrahydrobenzo[b]pyran and dihydropyrano[c]chromene derivatives in aqueous media by using trisodium citrate as a green catalyst. Arch Appl Sci Res. 2011;3.
  • 32. Mehrabi H, Abusaidi H. Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. J Iran Chem Soc. 2010;7(4):890‑4.
  • 33. Heravi MM, Zakeri M, Mohammadi N. Morpholine Catalyzed One-pot Multicomponent Synthesis of Compounds Containing Chromene Core in Water. Chin J Chem. 2011;29(6):1163‑6.
  • 34. Ranjbar-Karimi R, Hashemi-Uderji S, Mousavi M. Selectfluor promoted environmental-friendly synthesis of 2H-chromen-2-one derivatives under various reaction conditions. Journal of the Iranian Chemical Society. 2011;8(1):193-197.
  • 35. Shi D, Wang J, Zhuang Q-Y, Wang X-S. Three-component one-pot synthesis of 1,6-dioxa-5-oxo-1,4,5,6- tetrahydrophenanthrene derivatives in aqueous media. Chin J Org Chem. 2006; 26:643‑7.
  • 36. Shaabani A, Samadi S, Badri Z, Rahmati A. Ionic Liquid Promoted Efficient and Rapid One-pot Synthesis of Pyran Annulated Heterocyclic Systems. Catal Lett. 2005;104(1‑2):39‑43.
  • 37. Wang L-M, Shao J-H, Tian H, Wang Y-H, Liu B. Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. J Fluor Chem. 2006;127(1):97‑100.
  • 38. Hekmatshoar R, Majedi S, Bakhtiari K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catal Commun. 2008;9(2):307‑10.
  • 39. Mohammadi Ziarani G, Badiei A, Azizi M, Zarabadi P. Synthesis of 3,4-Dihydropyrano[c]Chromene Derivatives Using Sulfonic Acid Functionalized Silica (SiO2PrSO3H). Iran J Chem Chem Eng IJCCE. 2011;30(2):59‑65.
  • 40. Ziarani GM, Abbasi A, Badiei A, Aslani Z. An Efficient Synthesis of Tetrahydrobenzo[ b ]pyran Derivatives Using Sulfonic Acid Functionalized Silica as an Efficient Catalyst. E-J Chem. 2011;8(1):293‑9.
  • 41. Wang H-J, Lu J, Zhang Z-H. Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c] chromene derivatives. Monatshefte Für Chem - Chem Mon. 2010;141(10):1107‑12.
  • 42. Nagabhushana H, Sandeep Saundalkar S, Muralidhar L, Nagabhushana BM, Girija CR, Nagaraja D, et al. α-Fe2O3 nanoparticles: An efficient, inexpensive catalyst for the one-pot preparation of 3,4-dihydropyrano[c]chromenes. Chin Chem Lett. 2011;22(2):143‑6.
  • 43. Prasanna TSR, Raju KM. Silica Gel Promoted Mild, Efficient and Inexpensive Protocol for the Preparation of 3,4-dihydropyrano[c]chromenes. J Korean Chem Soc. 20 août 2011;55(4):662‑5.
  • 44. Tabatabaeian K, Heidari H, Mamaghani M, Mahmoodi NO. Ru(II) complexes bearing tertiary phosphine ligands: a novel and efficient homogeneous catalyst for one-pot synthesis of dihydropyrano[3,2-c] chromene and tetrahydrobenzo[b]pyran derivatives: Ru(II)-catalyzed synthesis of dihydropyrano[c]chromene derivatives. Appl Organomet Chem. 2012;26(2):56‑61.
  • 45. Brahmachari G, Banerjee B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4 H -pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustain Chem Eng. 3 mars 2014;2(3):411‑22.
  • 46. Shitole BV, Shitole NV, Shingare MS, Kakde GK. An efficient one pot three-component synthesis of dihydropyrano[3,2-c] chromenes using ammonium metavanadate as catalyst. Curr Chem Lett. 2016;137‑44.
  • 47. Hazeri N, Maghsoodlou MT, Mir F, Kangani M, Saravani H, Molashahi E. An efficient one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using starch solution as catalyst. Chin J Catal. 2014;35(3):391‑5.
  • 48. Patel DS, Avalani JR, Raval DK. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry. J Saudi Chem Soc. 2016;20:S401‑5.
  • 49. Niknam K, Jamali A. Silica-Bonded N-Propylpiperazine Sodium n-Propionate as Recyclable Basic Catalyst for Synthesis of 3,4-Dihydropyrano[c]chromene Derivatives and Biscoumarins. Chin J Catal. 2012;33(11‑12):1840‑9.
  • 50. Safaei-Ghomi J, Eshteghal F, Ghasemzadeh MA. Solvent-free synthesis of dihydropyrano [3,2-c]chromene and biscoumarin derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Acta Chim Slov. 2014;61(4):703‑8.
  • 51. Kanakaraju S, Prasanna B, Basavoju S, Chandramouli GVP. Ammonium acetate catalyzed an efficient one-pot three component synthesis of pyrano[3,2- c ]chromene derivatives. Arab J Chem. 2017;10:S2705‑13.
  • 52. Khan AT, Lal M, Ali S, Khan MM. One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett. 2011;52(41):5327‑32.
  • 53. Shitole NV, Shitole BV, Kakde GK. Disodium Phosphate: A Highly Efficient Catalyst for One-Pot Synthesis of Substituted 3,4-Dihydropyrano[3,2-C]Chromenes. Orbital - Electron J Chem. 2017;9(3):131-4.
  • 54. Abdolmohammadi S, Balalaie S. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Lett. avr 2007;48(18):3299‑303.
  • 55. Bahammou I, Esaady A, Boukhris S, Ghailane R, Habbadi N, Hassikou A, et al. Direct use of mineral fertilizers MAP, DAP, and TSP as heterogeneous catalysts in organic reactions. Mediterr J Chem. 2016;5(6):615‑23.
  • 56. Sibous S, Ghailane T, Houda S, Ghailane R, Boukhris S, Souizi A. Green and efficient method for the synthesis of 1,5-benzodiazipines using phosphate fertilizers as catalysts under free solvent. Mediterr J Chem. 2017;6(3):53‑9.
  • 57. Sibous S, Boukhris S, Ghailane R, Habbadi N, Hassikou A, Souizi A. Easy synthesis of 3,4-dihydropyrimidin -2-(1H)-ones using phosphate fertilizers MAP, DAP AND TSP as efficient catalysts. J Turk Chem Soc Sect Chem. 2017; 4(2): 477-88.
  • 58. Sheikhhosseini E, Sattaei Mokhtari T, Faryabi M, Rafiepour A, Soltaninejad S. Iron Ore Pellet, A Natural and Reusable Catalyst for Synthesis of Pyrano[2,3-d] pyrimidine and Dihydropyrano[c]chromene Derivatives in Aqueous Media. Iran J Chem Chem Eng IJCCE. 2016;35(1):43‑50.
  • 59. Sheikhhosseini E, Ghazanfari D, Nezamabadi V. A new method for synthesis of tetrahydrobenzo[b]pyrans and dihydropyrano[c]chromenes using p-dodecylbenzenesulfonic acid as catalyst in water. Iran J Catal. 2013;3(4):197‑201.
  • 60. Irani, S, Maghsoodlou, MT, Hazeri, Nourallah. Piperidine, an efficient base catalyst for the one-pot synthesis of 3,4-dihydropyrano[3,2-c]chromene derivatives. NISCAIR-CSIR,. 2017;649‑55.
  • 61. Maleki B. Green Synthesis of bis -Coumarin and Dihydropyrano[3,2-c]chromene Derivatives Catalyzed by o-Benzenedisulfonimide. Org Prep Proced Int. 2016;48(3):303‑18.
  • 62. Chen L, Lin J, Chen B, Zhao L. Sodium ethylene diamine tetraacetate catalyzed synthesis of chromene derivatives via multi-component reactions at low catalyst loading. Res Chem Intermed. 2017;43(11):6691‑700.
  • 63. Abaszadeh M, Seifi M. Three-Component Synthesis of Mono and Bis 4,5-Dihydropyrano[3,2-C]Chromenes and 4,5- Dihydropyran[4,3-B]Pyrans Catalyzed by Sodium Benzenesulfinates as a Green Organocatalyst. Acta Chem Iasi. 2017; 25(1):38 -50
There are 63 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Abdelaziz Souızı

Soukaina Chehab This is me

Youssef Merroun This is me

Touriya Ghaılane This is me

Rachida Ghaılane This is me

Said Boukhrıs

Publication Date January 1, 2018
Submission Date November 28, 2017
Acceptance Date February 26, 2018
Published in Issue Year 2018

Cite

Vancouver Souızı A, Chehab S, Merroun Y, Ghaılane T, Ghaılane R, Boukhrıs S. A Green and Efficient Method for the Synthesis of 3,4- Dihydropyrano[c]chromene using Phosphate Fertilizers (MAP, DAP and TSP) as Heterogeneous Catalysts. JOTCSA. 2018;5(2):355-70.

Cited By