Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Highly Thermally Stable Co(II)-coordination polymer with Semi-flexible Bis(Imidazole) Directed Secondary Building Unit: Solvothermal Syntheses and Structures

Yıl 2018, Cilt: 5 Sayı: 3, 1083 - 1094, 01.09.2018
https://doi.org/10.18596/jotcsa.355518

Öz

A
new thermally highly stable 2D coordination polymer, formulated as
[Co(μ6-aO2btc)0.5(μ-obix)]n  (ao2btc = dioxygenated form of
3,3′,5,5′-azobenzenetetracarboxylate) synthesized using the semi-flexible
1,2-bis(imidazole-1-ylmethyl)benzene (obix) ligand in solvothermal conditions
and characterized by single-crystal diffraction, FT-IR and photoluminescence
spectroscopy and thermogravimetric/differential thermal analysis.
Crystallographic studies of complex 1
reveal that two Co(II) ions are bridged by carboxylate groups of ao2btc ligand
to form paddle-wheel SBU. These SBUs are stabilized by the coordination of obix
ligand. The Co(II) ions are µ6-bridged by hexadentate aO2btc ligand
to generate 2D polymer chains with 3,4-connected binodal net (point symbol {4.62}2{42.62.82})
and topological type is 3,4L13. Thermal analysis shows that complex 1 thermally
stable up to 401 °C.

Kaynakça

  • 1. Lu JY. Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions. Coordination Chemistry Reviews. 2003;246(1):327-47.
  • 2. Janiak C. Engineering coordination polymers towards applications. Dalton Transactions. 2003(14):2781-804.
  • 3. Thapa KB, Chen J-D. Crystal engineering of coordination polymers containing flexible bis-pyridyl-bis-amide ligands. CrystEngComm. 2015;17(25):4611-26.
  • 4. Biradha K, Sarkar M, Rajput L. Crystal engineering of coordination polymers using 4,4[prime or minute]-bipyridine as a bond between transition metal atoms. Chemical Communications. 2006(40):4169-79.
  • 5. Semerci F, Yesilel OZ, Keskin S, Darcan C, Tas M, Dal H. Construction of homo- and heterometallic-pyridine-2,3-dicarboxylate metallosupramolecular networks with structural diversity: 1D T5(2) water tape and unexpected coordination mode of pyridine-2,3-dicarboxylate. CrystEngComm. 2013;15(6):1244-56.
  • 6. Li X-L, Liu G-Z, Xin L-Y, Wang L-Y. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism. Journal of Solid State Chemistry. 2017;246:252-7.
  • 7. Ma J, Tran LD, Matzger AJ. Toward Topology Prediction in Zr-Based Microporous Coordination Polymers: The Role of Linker Geometry and Flexibility. Crystal Growth & Design. 2016;16(7):4148-53.
  • 8. Zhu X-D, Li Y, Gao J-G, Wang F-H, Li Q-H, Yang H-X, et al. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties. Journal of Molecular Structure. 2017;1130:89-95.
  • 9. Semerci F. Syntheses and photoluminescence properties of new Zn (II) and Cd (II) coordination polymers prepared from 5-sulfoisophthalate ligand. Turkish Journal of Chemistry. 2017;41(2):243-55.
  • 10. Yang Y, Yang J, Du P, Liu Y-Y, Ma J-F. A series of metal-organic frameworks based on a semi-rigid bifunctional ligand 5-[(1H-1,2,4-triazol-1-yl)methoxy] isophthalic acid and flexible N-donor bridging ligands. CrystEngComm. 2014;16(28):6380-90.
  • 11. Semerci F, Yeşilel OZ, Yüksel F. Self-assembly of three new metal organic coordination networks based on 1,2-bis(imidazol-1yl-methyl)benzene. Polyhedron. 2015;102:1-7.
  • 12. Semerci F, Yeşilel OZ, Yüksel F, Şahin O. One-pot synthesis of two new metal–organic networks: hydrogen bonded mononuclear Cu(II) complex and mixed-valence Cu(I,II) coordination polymer with encapsulated 14-membered unique water cluster. Inorganic Chemistry Communications. 2015;62:29-33.
  • 13. Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM. Structures of Metal–Organic Frameworks with Rod Secondary Building Units. Chemical Reviews. 2016;116(19):12466-535.
  • 14. Ren G-J, Chang Z, Xu J, Hu Z, Liu Y-Q, Xu Y-L, et al. Construction of a polyhedron decorated MOF with a unique network through the combination of two classic secondary building units. Chemical Communications. 2016;52(10):2079-82.
  • 15. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, et al. Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research. 2001;34(4):319-30.
  • 16. Liu T-F, Lu J, Cao R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm. 2010;12(3):660-70.
  • 17. Heim D, Écija D, Seufert K, Auwärter W, Aurisicchio C, Fabbro C, et al. Self-Assembly of Flexible One-Dimensional Coordination Polymers on Metal Surfaces. Journal of the American Chemical Society. 2010;132(19):6783-90.
  • 18. Reineke TM, Eddaoudi M, Moler D, O'Keeffe M, Yaghi OM. Large Free Volume in Maximally Interpenetrating Networks:  The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1. Journal of the American Chemical Society. 2000;122(19):4843-4.
  • 19. Meng M, Zhong D-C, Lu T-B. Three porous metal-organic frameworks based on an azobenzenetricarboxylate ligand: synthesis, structures, and magnetic properties. CrystEngComm. 2011;13(22):6794-800.
  • 20. Lee Y-G, Moon HR, Cheon YE, Suh MP. A Comparison of the H2 Sorption Capacities of Isostructural Metal–Organic Frameworks With and Without Accessible Metal Sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angewandte Chemie International Edition. 2008;47(40):7741-5.
  • 21. Zhang S, Ma J, Zhang X, Duan E, Cheng P. Assembly of Metal–Organic Frameworks Based on 3,3′,5,5′-Azobenzene-tetracarboxylic Acid: Photoluminescences, Magnetic Properties, and Gas Separations. Inorganic Chemistry. 2015;54(2):586-95.
  • 22. Xu Y-C, Chen Y, Qiu H-J, Zeng X-S, Xu H-L, Li J, et al. Metal nuclearity affects network connectivity: a series of highly connected metal-organic frameworks based on polynuclear metal clusters as secondary building units. CrystEngComm. 2016;18(42):8182-93.
  • 23. Li Y-P, Zhang L-J, Ji W-J. Synthesis, characterization, crystal structure of magnesium compound based 3, 3′, 5, 5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure. 2017;1133:607-14.
  • 24. Fan L, Fan W, Li B, Liu X, Zhao X, Zhang X. Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. Dalton Transactions. 2015;44(5):2380-9.
  • 25. Liu W, Ye L, Liu X, Yuan L, Jiang J, Yan C. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. CrystEngComm. 2008;10(10):1395-403.
  • 26. Miller SR, Alvarez E, Fradcourt L, Devic T, Wuttke S, Wheatley PS, et al. A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chemical Communications. 2013;49(71):7773-5.
  • 27. Arıcı M, Yeşilel OZ, Taş M. Coordination Polymers Assembled From 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Different Bis(imidazole) Ligands with Varying Flexibility. Crystal Growth & Design. 2015;15(6):3024-31.
  • 28. Arıcı M, Yeşilel OZ, Taş M, Demiral H. Effect of Solvent Molecule in Pore for Flexible Porous Coordination Polymer upon Gas Adsorption and Iodine Encapsulation. Inorganic Chemistry. 2015;54(23):11283-91.
  • 29. Arıcı M, Yeşilel OZ, Taş M, Demiral H, Erer H. Construction, Structural Diversity, and Properties of Seven Zn(II)-Coordination Polymers Based on 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Flexible Substitute Bis(imidazole) Linkers. Crystal Growth & Design. 2016;16(9):5448-59.
  • 30. Arıcı M, Yeşilel OZ, Taş M. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties. Journal of Solid State Chemistry. 2017;245:146-51.
  • 31. Erer H, Yeşilel OZ, Arıcı M. A Series of Zinc(II) 3D → 3D Interpenetrated Coordination Polymers Based On Thiophene-2,5-dicarboxylate and Bis(Imidazole) Derivative Linkers. Crystal Growth & Design. 2015;15(7):3201-11.
  • 32. Erer H, Karaçam S, Arıcı M, Yeşilel OZ, Çelik Ö. Hydrothermal synthesis and characterization of Zn(II), Cd(II) and Ag(I)-saccharinate complexes containing bis(imidazol) derivatives. Polyhedron. 2015;98:180-9.
  • 33. Wang XX, Liu YG, Van Hecke K, Goltsev A, Cui GH. Three Silver(I) Coordination Polymers Constructed from Flexible Bis(benzimidazole) and Carboxylates Ligands. Zeitschrift für anorganische und allgemeine Chemie. 2015;641(5):903-10.
  • 34. Tan H-Y, Zhang H-X, Ou H-D, Kang B-S. Chair-form [Ag2(1,2-bimb)2]2+ in silver(I) complexes containing the ditopic ligand 1,2-bis(1-imidazolylmethyl)benzene (1,2-bimb). Inorganica Chimica Acta. 2004;357(3):869-74.
  • 35. Wang X-S, Ma S, Rauch K, Simmons JM, Yuan D, Wang X, et al. Metal−Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. Chemistry of Materials. 2008;20(9):3145-52.
  • 36. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography. 2009;42(2):339-41.
  • 37. Sheldrick G. A short history of SHELX. Acta Crystallogr A. 2008;64(1):112-22.
  • 38. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography. 2006;39(3):453-7.
  • 39. Blatov VA, Shevchenko AP, Proserpio DM. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst Growth Des. 2014;14(7):3576-86.
Yıl 2018, Cilt: 5 Sayı: 3, 1083 - 1094, 01.09.2018
https://doi.org/10.18596/jotcsa.355518

Öz

Kaynakça

  • 1. Lu JY. Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions. Coordination Chemistry Reviews. 2003;246(1):327-47.
  • 2. Janiak C. Engineering coordination polymers towards applications. Dalton Transactions. 2003(14):2781-804.
  • 3. Thapa KB, Chen J-D. Crystal engineering of coordination polymers containing flexible bis-pyridyl-bis-amide ligands. CrystEngComm. 2015;17(25):4611-26.
  • 4. Biradha K, Sarkar M, Rajput L. Crystal engineering of coordination polymers using 4,4[prime or minute]-bipyridine as a bond between transition metal atoms. Chemical Communications. 2006(40):4169-79.
  • 5. Semerci F, Yesilel OZ, Keskin S, Darcan C, Tas M, Dal H. Construction of homo- and heterometallic-pyridine-2,3-dicarboxylate metallosupramolecular networks with structural diversity: 1D T5(2) water tape and unexpected coordination mode of pyridine-2,3-dicarboxylate. CrystEngComm. 2013;15(6):1244-56.
  • 6. Li X-L, Liu G-Z, Xin L-Y, Wang L-Y. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism. Journal of Solid State Chemistry. 2017;246:252-7.
  • 7. Ma J, Tran LD, Matzger AJ. Toward Topology Prediction in Zr-Based Microporous Coordination Polymers: The Role of Linker Geometry and Flexibility. Crystal Growth & Design. 2016;16(7):4148-53.
  • 8. Zhu X-D, Li Y, Gao J-G, Wang F-H, Li Q-H, Yang H-X, et al. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties. Journal of Molecular Structure. 2017;1130:89-95.
  • 9. Semerci F. Syntheses and photoluminescence properties of new Zn (II) and Cd (II) coordination polymers prepared from 5-sulfoisophthalate ligand. Turkish Journal of Chemistry. 2017;41(2):243-55.
  • 10. Yang Y, Yang J, Du P, Liu Y-Y, Ma J-F. A series of metal-organic frameworks based on a semi-rigid bifunctional ligand 5-[(1H-1,2,4-triazol-1-yl)methoxy] isophthalic acid and flexible N-donor bridging ligands. CrystEngComm. 2014;16(28):6380-90.
  • 11. Semerci F, Yeşilel OZ, Yüksel F. Self-assembly of three new metal organic coordination networks based on 1,2-bis(imidazol-1yl-methyl)benzene. Polyhedron. 2015;102:1-7.
  • 12. Semerci F, Yeşilel OZ, Yüksel F, Şahin O. One-pot synthesis of two new metal–organic networks: hydrogen bonded mononuclear Cu(II) complex and mixed-valence Cu(I,II) coordination polymer with encapsulated 14-membered unique water cluster. Inorganic Chemistry Communications. 2015;62:29-33.
  • 13. Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM. Structures of Metal–Organic Frameworks with Rod Secondary Building Units. Chemical Reviews. 2016;116(19):12466-535.
  • 14. Ren G-J, Chang Z, Xu J, Hu Z, Liu Y-Q, Xu Y-L, et al. Construction of a polyhedron decorated MOF with a unique network through the combination of two classic secondary building units. Chemical Communications. 2016;52(10):2079-82.
  • 15. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, et al. Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research. 2001;34(4):319-30.
  • 16. Liu T-F, Lu J, Cao R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm. 2010;12(3):660-70.
  • 17. Heim D, Écija D, Seufert K, Auwärter W, Aurisicchio C, Fabbro C, et al. Self-Assembly of Flexible One-Dimensional Coordination Polymers on Metal Surfaces. Journal of the American Chemical Society. 2010;132(19):6783-90.
  • 18. Reineke TM, Eddaoudi M, Moler D, O'Keeffe M, Yaghi OM. Large Free Volume in Maximally Interpenetrating Networks:  The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1. Journal of the American Chemical Society. 2000;122(19):4843-4.
  • 19. Meng M, Zhong D-C, Lu T-B. Three porous metal-organic frameworks based on an azobenzenetricarboxylate ligand: synthesis, structures, and magnetic properties. CrystEngComm. 2011;13(22):6794-800.
  • 20. Lee Y-G, Moon HR, Cheon YE, Suh MP. A Comparison of the H2 Sorption Capacities of Isostructural Metal–Organic Frameworks With and Without Accessible Metal Sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angewandte Chemie International Edition. 2008;47(40):7741-5.
  • 21. Zhang S, Ma J, Zhang X, Duan E, Cheng P. Assembly of Metal–Organic Frameworks Based on 3,3′,5,5′-Azobenzene-tetracarboxylic Acid: Photoluminescences, Magnetic Properties, and Gas Separations. Inorganic Chemistry. 2015;54(2):586-95.
  • 22. Xu Y-C, Chen Y, Qiu H-J, Zeng X-S, Xu H-L, Li J, et al. Metal nuclearity affects network connectivity: a series of highly connected metal-organic frameworks based on polynuclear metal clusters as secondary building units. CrystEngComm. 2016;18(42):8182-93.
  • 23. Li Y-P, Zhang L-J, Ji W-J. Synthesis, characterization, crystal structure of magnesium compound based 3, 3′, 5, 5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure. 2017;1133:607-14.
  • 24. Fan L, Fan W, Li B, Liu X, Zhao X, Zhang X. Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. Dalton Transactions. 2015;44(5):2380-9.
  • 25. Liu W, Ye L, Liu X, Yuan L, Jiang J, Yan C. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. CrystEngComm. 2008;10(10):1395-403.
  • 26. Miller SR, Alvarez E, Fradcourt L, Devic T, Wuttke S, Wheatley PS, et al. A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chemical Communications. 2013;49(71):7773-5.
  • 27. Arıcı M, Yeşilel OZ, Taş M. Coordination Polymers Assembled From 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Different Bis(imidazole) Ligands with Varying Flexibility. Crystal Growth & Design. 2015;15(6):3024-31.
  • 28. Arıcı M, Yeşilel OZ, Taş M, Demiral H. Effect of Solvent Molecule in Pore for Flexible Porous Coordination Polymer upon Gas Adsorption and Iodine Encapsulation. Inorganic Chemistry. 2015;54(23):11283-91.
  • 29. Arıcı M, Yeşilel OZ, Taş M, Demiral H, Erer H. Construction, Structural Diversity, and Properties of Seven Zn(II)-Coordination Polymers Based on 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Flexible Substitute Bis(imidazole) Linkers. Crystal Growth & Design. 2016;16(9):5448-59.
  • 30. Arıcı M, Yeşilel OZ, Taş M. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties. Journal of Solid State Chemistry. 2017;245:146-51.
  • 31. Erer H, Yeşilel OZ, Arıcı M. A Series of Zinc(II) 3D → 3D Interpenetrated Coordination Polymers Based On Thiophene-2,5-dicarboxylate and Bis(Imidazole) Derivative Linkers. Crystal Growth & Design. 2015;15(7):3201-11.
  • 32. Erer H, Karaçam S, Arıcı M, Yeşilel OZ, Çelik Ö. Hydrothermal synthesis and characterization of Zn(II), Cd(II) and Ag(I)-saccharinate complexes containing bis(imidazol) derivatives. Polyhedron. 2015;98:180-9.
  • 33. Wang XX, Liu YG, Van Hecke K, Goltsev A, Cui GH. Three Silver(I) Coordination Polymers Constructed from Flexible Bis(benzimidazole) and Carboxylates Ligands. Zeitschrift für anorganische und allgemeine Chemie. 2015;641(5):903-10.
  • 34. Tan H-Y, Zhang H-X, Ou H-D, Kang B-S. Chair-form [Ag2(1,2-bimb)2]2+ in silver(I) complexes containing the ditopic ligand 1,2-bis(1-imidazolylmethyl)benzene (1,2-bimb). Inorganica Chimica Acta. 2004;357(3):869-74.
  • 35. Wang X-S, Ma S, Rauch K, Simmons JM, Yuan D, Wang X, et al. Metal−Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. Chemistry of Materials. 2008;20(9):3145-52.
  • 36. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography. 2009;42(2):339-41.
  • 37. Sheldrick G. A short history of SHELX. Acta Crystallogr A. 2008;64(1):112-22.
  • 38. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography. 2006;39(3):453-7.
  • 39. Blatov VA, Shevchenko AP, Proserpio DM. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst Growth Des. 2014;14(7):3576-86.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Fatih Semerci

Yayımlanma Tarihi 1 Eylül 2018
Gönderilme Tarihi 18 Kasım 2017
Kabul Tarihi 12 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 3

Kaynak Göster

Vancouver Semerci F. A New Highly Thermally Stable Co(II)-coordination polymer with Semi-flexible Bis(Imidazole) Directed Secondary Building Unit: Solvothermal Syntheses and Structures. JOTCSA. 2018;5(3):1083-94.