Araştırma Makalesi
BibTex RIS Kaynak Göster

A Sensitive Quantification of Agmatine Using a Hybrid Electrode Based on Zinc oxide Nanoparticles

Yıl 2018, Cilt: 5 Sayı: 3, 1205 - 1214, 01.09.2018
https://doi.org/10.18596/jotcsa.401450

Öz

An electrochemical sensor was prepared by modifiying a hybrid
of multi-walled carbon nanotubes (MWCNTs) and zinc oxide nanoparticles (ZnONPs)
to a glassy carbon (GC) electrode surface to accurately determine agmatine. The
ZnONPs+MWCNTs/GC electrode surface was characterized using scanning electron
microscopy and energy dispersive X-ray. Agmatine did not exhibit any peak on
the GC electrode surface but exhibited a large oxidation peak at 637.9 mV
on the MWCNT/GC electrode surface. Furthermore, it was observed that the
electrochemical behavior of agmatine was greatly improved on the
MWCNT+ZnONPs/GC electrode surface and that this surface exhibited a
well-defined higher current peak at 581.9 mV. The electrochemical
responses of agmatine on the MWCNT+ZnONPs/GC electrode surface were performed
using square wave voltammetry.
A linear plot was obtained for the
current responses of agmatine against concentrations in the range of 0.1 µM–5.2 µM yielding a detection limit
of 4.13×10−6  M  (based on 3Sb/m). The accurate
quantification of agmatine makes the ZnONPs+MWCNTs/GC electrode system of great
interest for the
treatment of schizophrenia. 

Kaynakça

  • 1. Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomedicine & Pharmacotherapy. 2017;92:720-5.
  • 2. Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. European Neuropsychopharmacology. 2016;26(12):1885-99.
  • 3. Gilad GM, Salame K, Rabey JM, Gilad VH. Agmatine treatment is neuroprotective in rodent brain injury models. Life sciences. 1995;58(2):PL41-PL6.
  • 4. Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neuroscience letters. 2005;390(3):129-33.
  • 5. Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends in pharmacological sciences. 2000;21(5):187-93.
  • 6. Benítez J, García D, Romero N, González A, Martínez-Oyanedel J, Figueroa M, et al. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism-Clinical and Experimental. 2018;81:35-44.
  • 7. Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, et al. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy & Behavior. 2018;78:142-8.
  • 8. Gawali NB, Bulani VD, Chowdhury AA, Deshpande PS, Nagmoti DM, Juvekar AR. Agmatine ameliorates lipopolysaccharide induced depressive-like behaviour in mice by targeting the underlying inflammatory and oxido-nitrosative mediators. Pharmacology Biochemistry and Behavior. 2016;149:1-8.
  • 9. Uzbay TI. The pharmacological importance of agmatine in the brain. Neuroscience & Biobehavioral Reviews. 2012;36(1):502-19.
  • 10. Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, et al. Increased plasma agmatine levels in patients with schizophrenia. Journal of psychiatric research. 2013;47(8):1054-60.
  • 11. Kotagale NR, Taksande BG, Wadhwani PJ, Palhade MW, Mendhi SM, Gawande DY, et al. Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacology Biochemistry and Behavior. 2012;100(3):398-403.
  • 12. Uzbay IT, Kayir H, Göktalay G, Yildirim M. P. 3. b. 004 Agmatine induces schizophrenia-like symptom in Wistar rats. European Neuropsychopharmacology. 2008;18:S399.
  • 13. Zhang M, Wang S, Li T, Chen J, Zhu H, Du M. Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochimica Acta. 2016;208:1-9.
  • 14. Baytak AK, Duzmen S, Teker T, Aslanoglu M. Voltammetric determination of methylparaben and its DNA interaction using a novel platform based on carbon nanofibers and cobalt-nickel-palladium nanoparticles. Sensors and Actuators B: Chemical. 2017;239:330-7.
  • 15. Wang L, Pumera M. Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond–A review. Applied Materials Today. 2016;5:134-41.
  • 16. Rahman MM, Ahmed J. Cd-doped Sb 2 O 4 nanostructures modified glassy carbon electrode for efficient detection of melamine by electrochemical approach. Biosensors and Bioelectronics. 2018;102:631-6.
  • 17. Ramamoorthy C, Rajendran V. Synthesis and characterization of CuS nanostructures: Structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process. International Journal of Hydrogen Energy. 2017;42(42):26454-63.
  • 18. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. Materials Science and Engineering: C. 2016;66:278-84.
  • 19. Baghayeri M, Zare EN, Lakouraj MM. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly (p-phenylenediamine)@ Fe3O4 nanocomposite. Biosensors and bioelectronics. 2014;55:259-65.
  • 20. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Materials Science and Engineering: C. 2016;67:125-31.
  • 21. Xu C-X, Huang K-J, Fan Y, Wu Z-W, Li J, Gan T. Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly (4-aminobenzenesulfonic acid) composite film based platform. Materials Science and Engineering: C. 2012;32(4):969-74.
  • 22. Baytak AK, Aslanoglu M. Voltammetric quantification of tryptophan using a MWCNT modified GCE decorated with electrochemically produced nanoparticles of nickel. Sensors and Actuators B: Chemical. 2015;220:1161-8.
  • 23. Ye D, Luo L, Ding Y, Liu B, Liu X. Fabrication of Co 3 O 4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst. 2012;137(12):2840-5. 24. Wei M-Y, Huang R, Guo L-H. High catalytic activity of indium tin oxide nanoparticle modified electrode towards electro-oxidation of ascorbic acid. Journal of Electroanalytical Chemistry. 2012;664:156-60.
  • 25. Yang J, Lin C, Wang Z, Lin J. In (OH) 3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorganic chemistry. 2006;45(22):8973-9.
  • 26. Sanguansak Y, Srimuk P, Krittayavathananon A, Luanwuthi S, Chinvipas N, Chiochan P, et al. Permselective properties of graphene oxide and reduced graphene oxide electrodes. Carbon. 2014;68:662-9.
  • 27. Fayemi OE, Adekunle AS, Ebenso EE. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sensing and Bio-Sensing Research,2017;13: 17-27.
Yıl 2018, Cilt: 5 Sayı: 3, 1205 - 1214, 01.09.2018
https://doi.org/10.18596/jotcsa.401450

Öz

Kaynakça

  • 1. Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomedicine & Pharmacotherapy. 2017;92:720-5.
  • 2. Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. European Neuropsychopharmacology. 2016;26(12):1885-99.
  • 3. Gilad GM, Salame K, Rabey JM, Gilad VH. Agmatine treatment is neuroprotective in rodent brain injury models. Life sciences. 1995;58(2):PL41-PL6.
  • 4. Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neuroscience letters. 2005;390(3):129-33.
  • 5. Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends in pharmacological sciences. 2000;21(5):187-93.
  • 6. Benítez J, García D, Romero N, González A, Martínez-Oyanedel J, Figueroa M, et al. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism-Clinical and Experimental. 2018;81:35-44.
  • 7. Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, et al. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy & Behavior. 2018;78:142-8.
  • 8. Gawali NB, Bulani VD, Chowdhury AA, Deshpande PS, Nagmoti DM, Juvekar AR. Agmatine ameliorates lipopolysaccharide induced depressive-like behaviour in mice by targeting the underlying inflammatory and oxido-nitrosative mediators. Pharmacology Biochemistry and Behavior. 2016;149:1-8.
  • 9. Uzbay TI. The pharmacological importance of agmatine in the brain. Neuroscience & Biobehavioral Reviews. 2012;36(1):502-19.
  • 10. Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, et al. Increased plasma agmatine levels in patients with schizophrenia. Journal of psychiatric research. 2013;47(8):1054-60.
  • 11. Kotagale NR, Taksande BG, Wadhwani PJ, Palhade MW, Mendhi SM, Gawande DY, et al. Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacology Biochemistry and Behavior. 2012;100(3):398-403.
  • 12. Uzbay IT, Kayir H, Göktalay G, Yildirim M. P. 3. b. 004 Agmatine induces schizophrenia-like symptom in Wistar rats. European Neuropsychopharmacology. 2008;18:S399.
  • 13. Zhang M, Wang S, Li T, Chen J, Zhu H, Du M. Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochimica Acta. 2016;208:1-9.
  • 14. Baytak AK, Duzmen S, Teker T, Aslanoglu M. Voltammetric determination of methylparaben and its DNA interaction using a novel platform based on carbon nanofibers and cobalt-nickel-palladium nanoparticles. Sensors and Actuators B: Chemical. 2017;239:330-7.
  • 15. Wang L, Pumera M. Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond–A review. Applied Materials Today. 2016;5:134-41.
  • 16. Rahman MM, Ahmed J. Cd-doped Sb 2 O 4 nanostructures modified glassy carbon electrode for efficient detection of melamine by electrochemical approach. Biosensors and Bioelectronics. 2018;102:631-6.
  • 17. Ramamoorthy C, Rajendran V. Synthesis and characterization of CuS nanostructures: Structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process. International Journal of Hydrogen Energy. 2017;42(42):26454-63.
  • 18. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. Materials Science and Engineering: C. 2016;66:278-84.
  • 19. Baghayeri M, Zare EN, Lakouraj MM. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly (p-phenylenediamine)@ Fe3O4 nanocomposite. Biosensors and bioelectronics. 2014;55:259-65.
  • 20. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Materials Science and Engineering: C. 2016;67:125-31.
  • 21. Xu C-X, Huang K-J, Fan Y, Wu Z-W, Li J, Gan T. Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly (4-aminobenzenesulfonic acid) composite film based platform. Materials Science and Engineering: C. 2012;32(4):969-74.
  • 22. Baytak AK, Aslanoglu M. Voltammetric quantification of tryptophan using a MWCNT modified GCE decorated with electrochemically produced nanoparticles of nickel. Sensors and Actuators B: Chemical. 2015;220:1161-8.
  • 23. Ye D, Luo L, Ding Y, Liu B, Liu X. Fabrication of Co 3 O 4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst. 2012;137(12):2840-5. 24. Wei M-Y, Huang R, Guo L-H. High catalytic activity of indium tin oxide nanoparticle modified electrode towards electro-oxidation of ascorbic acid. Journal of Electroanalytical Chemistry. 2012;664:156-60.
  • 25. Yang J, Lin C, Wang Z, Lin J. In (OH) 3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorganic chemistry. 2006;45(22):8973-9.
  • 26. Sanguansak Y, Srimuk P, Krittayavathananon A, Luanwuthi S, Chinvipas N, Chiochan P, et al. Permselective properties of graphene oxide and reduced graphene oxide electrodes. Carbon. 2014;68:662-9.
  • 27. Fayemi OE, Adekunle AS, Ebenso EE. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sensing and Bio-Sensing Research,2017;13: 17-27.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Hilal İncebay

Yayımlanma Tarihi 1 Eylül 2018
Gönderilme Tarihi 5 Mart 2018
Kabul Tarihi 17 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 3

Kaynak Göster

Vancouver İncebay H. A Sensitive Quantification of Agmatine Using a Hybrid Electrode Based on Zinc oxide Nanoparticles. JOTCSA. 2018;5(3):1205-14.