Araştırma Makalesi
BibTex RIS Kaynak Göster

Polyoxotungstate/Oxy-Graphene Nanocomposite Multilayer Films For Electrocatalytic Hydrogen Evolution

Yıl 2018, Cilt: 5 Sayı: 3, 1169 - 1176, 01.09.2018
https://doi.org/10.18596/jotcsa.420009

Öz

In this study, nanocomposites were formed together with
Keggin-type
K7-xNaxPW11O39∙14H2O
(POTs)
clusters
and oxygenated-graphene (Oxy-G). It was produced as a multilayer by
layer-by-layer self-assembly method using protonated poly (ethylenimine) (PEI).
The produced (PEI / POTs / Oxy-G) n multilayer films were controlled by XRD,
cyclic voltammetry and UV-visible spectroscopy. (PEI / POTs / Oxy-G) n
multilayers modified on a glassy carbon electrode and the hydrogen evolution
reaction taking advantage of the electrocatalytic activity of this
nanocomposite. Multilayer has been shown to exhibit a potentially good
electrocatalytic activity at -0.4 V. A notable electrocatalytic hydrogen
evolution reaction could be identified on the (PEI/ POTs/Oxy-G)n multilayer.
We demonstrate that expanded the application of POTs/G nanocomposites to the
electrocatalysis of oxygen reduction reaction and hydrogen evolution reaction.
This excellent approach will offer new insights into different electrode structure
and the development of novel electroactive catalysts.

Kaynakça

  • 1. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater.,2007, 6, 183−191.
  • 2. Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R., Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820−3839.
  • 3. Kim, Y. K.; Han, S. W.; Min, D. H. Graphene Oxide Sheath on Ag Nanoparticle/Graphene Hybrid Films as an Antioxidative Coating and Enhancer of Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces. 2012, 4, 6545−6551.
  • 4. Seger, B.; Kamat, P. V. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in Pem Fuel Cells. J. Phys. Chem. C. 2009, 113, 7990−7995.
  • 5. Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392−1401.
  • 6. Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano. 2008, 2, 1487−1491.
  • 7. Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 Nanoparticles Grown on Graphene as Advanced Electrode Materials for Supercapacitors. J. Power Sources. 2014, 245, 101−106.
  • 8. Zeng, G.; Xing, Y.; Gao, J.; Wang, Z.; Zhang, X. Unconventional Layer-by-Layer Assembly of Graphene Multilayer Films for Enzyme- Based Glucose and Maltose Biosensing. Langmuir 2010, 26, 15022−15026.
  • 9. Liu, R.; Li, S.; Yu, X.; Zhang, G.; Zhang, S.; Yao, J.; Keita, B.;Nadjo, L.; Zhi, L. Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzyme-Free ElectrochemicalBiosensor for Hydrogen Peroxide. Small. 2012, 8, 1398−1406.
  • 10. Zhang, Q. L.; Xu, T. Q.; Wei, J.; Chen, J. R.; Wang, A. J.; Feng,J. J. Facile Synthesis of Uniform Pt Nanoparticles on Polydopamine-Reduced Graphene Oxide and Their Electrochemical Sensing.Electrochim. Acta. 2013, 112, 127−132.
  • 11. Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S.Graphene-Based Electrodes for Electrochemical Energy Storage.Energy Environ. Sci. 2013, 6, 1388−1414.
  • 12. Stracke, J. J.; Finke, R. G. Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate Co4(H2O)2(PW9O34)210‑:Identification of Heterogeneous CoOx as the Dominant Catalyst. J.Am. Chem. Soc. 2011, 133, 14872−14875.
  • 13. Coquelard, C. C.; Sébastien Sorgues, S.; Ruhlmann, L. Photocatalysis with Polyoxometalates Associated to Porphyrins under Visible Light: An Application of Charge Transfer in Electrostatic Complexes. J. Phys. Chem. A 2010, 114, 6394−6400.
  • 14. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater. 1999, 11, 771−778.
  • 15. Petit, C.; Bandosz, T. J. Graphite Oxide/Polyoxometalate Nanocomposites as Adsorbents of Ammonia. J. Phys. Chem. C 2009, 113, 3800−3809.
  • 16. Zhou, D.; Han, B.-H. Graphene-Based Nanoporous Materials Assembled by Mediation of Polyoxometalate Nanoparticles. Adv. Funct. Mater. 2010, 20, 2717−2722.
  • 17. Li, H. L.; Pang, S. P.; Wu, S.; Feng, X. L.; Müllen, K.; Bubeck, C. Layer-by-Layer Assembly and UV Photoreduction of Graphene-Polyoxometalate Composite Films for Electronics. J. Am. Chem. Soc.2011, 133, 9423−9429.
  • 18. Guo, S. X.; Liu, Y. P.; Lee, C.-Y.; Bond, A. M.; Zhang, J.; Geletii, Y. V.; Hill, C. L. Graphene-Supported {Ru4O4(OH)2(H2O)4}-(Gamma-SiW10O36)210− for Highly Efficient Electrocatalytic Water Oxidation. Energy Environ. Sci. 2013, 6, 2654−2663.
  • 19. Li, S. W.; Liu, R. J.; Ngo Biboum, R.; Lepoittevin, B.; Zhang, G.; Dolbecq, A.; Mialane, P.; Keita, B. First Examples of Hybrids Based on Graphene and a Ring-Shaped Macrocyclic Polyoxometalate: Synthesis, Characterization, and Properties. Eur. J. Inorg. Chem. 2013, 2013,1882−1889.
  • 20. Wang, S.; Li, H. L.; Li, S.; Liu, F.; Wu, D. Q.; Feng, X. L.; Wu, L. X. Electrochemical-Reduction-Assisted Assembly of a Polyoxometalate/Graphene Nanocomposite and Its Enhanced Lithium-Storage Performance. Chem.Eur. J. 2013, 19, 10895−10902.
  • 21. Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Yao, J. N.; Zhi, L. J. A General Green Strategy for Fabricating Metal Nanoparticles/Polyoxometalate/Graphene Tri-Component Nanohybrids: Enhanced Electrocatalytic Properties. J. Mater. Chem. 2012, 22, 3319−3322.
  • 22. Nohra, B.; El Moll, H.; Albelo, L. M. R.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Biboum, R. N.; Lemaire, J.; Keita, B.; et al. Polyoxometalate-Based Metal Organic Frameworks (Pomofs): Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 13363−13374.
  • 23. Zhang, H. Y.; Miao, A. J.; Jiang, M. Fabrication, Characterization and Electrochemistry of Organic-Inorganic Multilayer Films Containing Polyoxometalate and Polyviologen Via Layer-by-Layer Self- Assembly. Mater. Chem. Phys. 2013, 141, 482−487.
  • 24. R. Contant, Relation entre les tungstophophates apparentés à l’anion PW12O403‐.Synthèse et propriétés d’un nouveau polyoxotungstophosphate lacunaire K10P2W20O70∙24H20, Can. J. Chem. 1987, 65, 568‐573.
Yıl 2018, Cilt: 5 Sayı: 3, 1169 - 1176, 01.09.2018
https://doi.org/10.18596/jotcsa.420009

Öz

Kaynakça

  • 1. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater.,2007, 6, 183−191.
  • 2. Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R., Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820−3839.
  • 3. Kim, Y. K.; Han, S. W.; Min, D. H. Graphene Oxide Sheath on Ag Nanoparticle/Graphene Hybrid Films as an Antioxidative Coating and Enhancer of Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces. 2012, 4, 6545−6551.
  • 4. Seger, B.; Kamat, P. V. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in Pem Fuel Cells. J. Phys. Chem. C. 2009, 113, 7990−7995.
  • 5. Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392−1401.
  • 6. Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano. 2008, 2, 1487−1491.
  • 7. Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 Nanoparticles Grown on Graphene as Advanced Electrode Materials for Supercapacitors. J. Power Sources. 2014, 245, 101−106.
  • 8. Zeng, G.; Xing, Y.; Gao, J.; Wang, Z.; Zhang, X. Unconventional Layer-by-Layer Assembly of Graphene Multilayer Films for Enzyme- Based Glucose and Maltose Biosensing. Langmuir 2010, 26, 15022−15026.
  • 9. Liu, R.; Li, S.; Yu, X.; Zhang, G.; Zhang, S.; Yao, J.; Keita, B.;Nadjo, L.; Zhi, L. Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzyme-Free ElectrochemicalBiosensor for Hydrogen Peroxide. Small. 2012, 8, 1398−1406.
  • 10. Zhang, Q. L.; Xu, T. Q.; Wei, J.; Chen, J. R.; Wang, A. J.; Feng,J. J. Facile Synthesis of Uniform Pt Nanoparticles on Polydopamine-Reduced Graphene Oxide and Their Electrochemical Sensing.Electrochim. Acta. 2013, 112, 127−132.
  • 11. Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S.Graphene-Based Electrodes for Electrochemical Energy Storage.Energy Environ. Sci. 2013, 6, 1388−1414.
  • 12. Stracke, J. J.; Finke, R. G. Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate Co4(H2O)2(PW9O34)210‑:Identification of Heterogeneous CoOx as the Dominant Catalyst. J.Am. Chem. Soc. 2011, 133, 14872−14875.
  • 13. Coquelard, C. C.; Sébastien Sorgues, S.; Ruhlmann, L. Photocatalysis with Polyoxometalates Associated to Porphyrins under Visible Light: An Application of Charge Transfer in Electrostatic Complexes. J. Phys. Chem. A 2010, 114, 6394−6400.
  • 14. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater. 1999, 11, 771−778.
  • 15. Petit, C.; Bandosz, T. J. Graphite Oxide/Polyoxometalate Nanocomposites as Adsorbents of Ammonia. J. Phys. Chem. C 2009, 113, 3800−3809.
  • 16. Zhou, D.; Han, B.-H. Graphene-Based Nanoporous Materials Assembled by Mediation of Polyoxometalate Nanoparticles. Adv. Funct. Mater. 2010, 20, 2717−2722.
  • 17. Li, H. L.; Pang, S. P.; Wu, S.; Feng, X. L.; Müllen, K.; Bubeck, C. Layer-by-Layer Assembly and UV Photoreduction of Graphene-Polyoxometalate Composite Films for Electronics. J. Am. Chem. Soc.2011, 133, 9423−9429.
  • 18. Guo, S. X.; Liu, Y. P.; Lee, C.-Y.; Bond, A. M.; Zhang, J.; Geletii, Y. V.; Hill, C. L. Graphene-Supported {Ru4O4(OH)2(H2O)4}-(Gamma-SiW10O36)210− for Highly Efficient Electrocatalytic Water Oxidation. Energy Environ. Sci. 2013, 6, 2654−2663.
  • 19. Li, S. W.; Liu, R. J.; Ngo Biboum, R.; Lepoittevin, B.; Zhang, G.; Dolbecq, A.; Mialane, P.; Keita, B. First Examples of Hybrids Based on Graphene and a Ring-Shaped Macrocyclic Polyoxometalate: Synthesis, Characterization, and Properties. Eur. J. Inorg. Chem. 2013, 2013,1882−1889.
  • 20. Wang, S.; Li, H. L.; Li, S.; Liu, F.; Wu, D. Q.; Feng, X. L.; Wu, L. X. Electrochemical-Reduction-Assisted Assembly of a Polyoxometalate/Graphene Nanocomposite and Its Enhanced Lithium-Storage Performance. Chem.Eur. J. 2013, 19, 10895−10902.
  • 21. Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Yao, J. N.; Zhi, L. J. A General Green Strategy for Fabricating Metal Nanoparticles/Polyoxometalate/Graphene Tri-Component Nanohybrids: Enhanced Electrocatalytic Properties. J. Mater. Chem. 2012, 22, 3319−3322.
  • 22. Nohra, B.; El Moll, H.; Albelo, L. M. R.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Biboum, R. N.; Lemaire, J.; Keita, B.; et al. Polyoxometalate-Based Metal Organic Frameworks (Pomofs): Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 13363−13374.
  • 23. Zhang, H. Y.; Miao, A. J.; Jiang, M. Fabrication, Characterization and Electrochemistry of Organic-Inorganic Multilayer Films Containing Polyoxometalate and Polyviologen Via Layer-by-Layer Self- Assembly. Mater. Chem. Phys. 2013, 141, 482−487.
  • 24. R. Contant, Relation entre les tungstophophates apparentés à l’anion PW12O403‐.Synthèse et propriétés d’un nouveau polyoxotungstophosphate lacunaire K10P2W20O70∙24H20, Can. J. Chem. 1987, 65, 568‐573.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Yasemin Torlak

Yayımlanma Tarihi 1 Eylül 2018
Gönderilme Tarihi 30 Nisan 2018
Kabul Tarihi 29 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 3

Kaynak Göster

Vancouver Torlak Y. Polyoxotungstate/Oxy-Graphene Nanocomposite Multilayer Films For Electrocatalytic Hydrogen Evolution. JOTCSA. 2018;5(3):1169-76.