Research Article
BibTex RIS Cite

pH effect on hydrothermal synthesis of the coordination polymers containing pyrazine-2,3-dicarboxylate: Investigation of thermal stability, luminescence and electrical conductivity properties

Year 2020, Volume: 7 Issue: 1, 243 - 258, 15.02.2020
https://doi.org/10.18596/jotcsa.565700

Abstract

Hydrothermal reactions of lanthanide(III) salt with
2,3-pyrazinedicarboxylic (2,3-pzdc) acid yielded the coordination polymers
[La2(2,3-pzdc)3(H2O)]n.3nH2O
(1)
and [La2(2,3-pzdc)3(H2O)]n.2nH2O
(2)
Compounds
were obtained in a three dimensional form with different pH values under
subcritical water conditions.
The structures had variable coordination numbers. In addition, pH values play an important role in
the structural chemistry of these materials.
Different characterization techniques (Elemental
analysis, FT-IR, ICP-OES, TG/DTA, FESEM, PXRD, BET and single crystal X-ray)
were carried out to confirm crystallinity, porosity, purity and chemical
composition of the coordination polymers. Crystal structures of the polymers were
examined in detail. Their thermal stability, luminescence and electrical
conductivity properties were investigated in the solid state.

Supporting Institution

ÇUKUROVA UNIVERSITY

Project Number

FEF2013D5

Thanks

The authors gratefully acknowledge financial support from the Research Unit of Çukurova University (Grant No. FEF2013D5).

References

  • 1. Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chemical Society Reviews 2014; 43: 6141-6172. DOI: 10.1039/c4cs00135d
  • 2. Zhou X, Liu P, Huang W-H, Kang M, Wang Y-Y, Shi Q-Z. Solvents influence on sizes of channels in three fry topological Mn(II)-MOFs based on metal–carboxylate chains: syntheses, structures and magnetic properties. CrystEngComm 2013; 15: 8125-8133. DOI: 10.1039/C3CE41120F
  • 3. Wang P, Fan R-Q, Liu X-R, Wang L-Y, Yang Y-L, Cao W-W, Yang B, Hasi W, Su Q, Mu Y. Two-/three-dimensional open lanthanide-organic frameworks containing rigid/flexible dicarboxylate ligands: synthesis, crystal structure and photoluminescent properties. CrystEngComm 2013; 15: 1931-1949. DOI: 10.1039/c3ce26684b
  • 4. Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal-organic frameworks as heterogeneous catalysts. Chemical Communications 2012; 48: 11275-11289. DOI: 10.1039/c2cc34329k
  • 5. Nguyen LTL, Le KKA, Truong HX, Phan NTS. Metal-organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology 2012; 2: 521-528. DOI: 10.1039/c1cy00386k
  • 6. Tan Y-X, He Y-P, Zhang J. Cluster-Organic Framework Materials as Heterogeneous Catalysts for High Efficient Addition Reaction of Diethylzinc to Aromatic Aldehydes. Chemistry of Materials 2012; 24: 4711-4716. DOI:10.1021/cm302953x
  • 7. Tian D, Li Y, Chen R-Y, Chang Z, Wang G-Y, Bu X-H. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives. Journal of Materials Chemistry A 2014; 2: 1465-1470. DOI: 10.1039/c3ta13983b
  • 8. Guo Y, Feng X, Han T, Wang S, Lin Z, Dong Y, Wang B. Tuning the Luminescence of Metal-Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society 2014; 136: 15485-15488. DOI: 10.1021/ja508962m
  • 9. Kim TK, Lee JH, Moon D, Moon HR. Luminescent Li-Based Metal-Organic Framework Tailored for the Selective Detection of Explosive Nitroaromatic Compounds: Direct Observation of Interaction Sites. Inorganic Chemistry 2012; 52: 589-595. DOI: 10.1021/ic3011458
  • 10. Gándara F, Furukawa H, Lee S, Yaghi OM. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks. Journal of the American Chemical Society 2014; 136: 5271-5274. DOI: 10.1021/ja501606h
  • 11. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T. Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges. Journal of the American Chemical Society 2013; 135: 11887-11894. DOI: 10.1021/ja4045289
  • 12. Li Y-W, Li J-R, Wang L-F, Zhou B-Y, Chen Q, Bu X-H. Microporous metal-organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. Journal of Materials Chemistry A 2013; 1: 495-499. DOI: 10.1039/c2ta00635a
  • 13. Bloch ED, Hudson MR, Mason JA, Chavan S, Crocellà V, Howe JD, Lee K, Dzubak AL, Queen WL, Zadrozny JM, Geier SJ, Lin L-C, Gagliardi L, Smit B, Neaton JB, Bordiga S, Brown CM, Long JR. Reversible CO Binding Enables Tunable CO/H2 and CO/N2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations. Journal of the American Chemical Society 2014; 136: 10752-10761. DOI: 10.1021/ja505318p
  • 14. Dou Z, Yu J, Cui Y, Yang Y, Wang Z, Yang D, Qian G. Luminescent Metal-Organic Framework Films As Highly Sensitive and Fast-Response Oxygen Sensors. Journal of the American Chemical Society 2014; 136: 5527-5530. DOI: 10.1021/ja411224j
  • 15. Cunha D, Ben Yahia M, Hall S, Miller SR, Chevreau H, Elkaïm E, Maurin G, Horcajada P, Serre C. Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks. Chemistry of Materials 2013; 25: 2767-2776. DOI: 10.1021/cm400798p
  • 16. Seetharaj R, Vandana PV, Arya P, Mathew S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 2016; 12: 295-315. DOI: 10.1016/j.arabjc.2016.01.003
  • 17. Li P-Z, Wang X-J, Li Y, Zhang Q, Tan RHD, Lim WQ, Ganguly R, Zhao Y. Co(II)-tricarboxylate metal-organic frameworks constructed from solvent-directed assembly for CO2 adsorption. Microporous and Mesoporous Materials 2013; 176: 194-198. DOI: 10.1016/j.micromeso.2013.03.052
  • 18. Sun F, Zhu G. Solvent-directed synthesis of chiral and non-centrosymmetric metal-organic frameworks based on pyridine-3,5-dicarboxylate. Inorganic Chemistry Communications 2013; 38: 115-118. DOI: 10.1016/j.inoche.2013.10.018
  • 19. Liu T, Luo D, Xu D, Zeng H, Lin Z. Solvent induced structural variation in magnesium carboxylate frameworks. Inorganic Chemistry Communications 2013; 29: 110-113. DOI: 10.1016/j.inoche.2012.12.017
  • 20. Chen L, Jia H-Y, Hong X-J, Chen D-H, Zheng Z-P, Jin H-G, Gu Z-G, Cai Y-P. Construction of one pH-independent 3-D pillar-layer lead-organic framework containing tetrazole-1-acetic acid. Inorganic Chemistry Communications 2013; 27: 22-25. DOI: 10.1016/j.inoche.2012.10.010
  • 21. Li S-L, Tan K, Lan Y-Q, Qin J-S, Li M-N, Du D-Y, Zang H-Y, Su Z-M. pH-Dependent Binary Metal-Organic Compounds Assembled from Different Helical Units: Structural Variation and Supramolecular Isomers. Crystal Growth & Design 2010; 10: 1699-1705. DOI: 10.1021/cg9012763
  • 22. Gabriel C, Perikli M, Raptopoulou CP, Terzis A, Psycharis V, Mateescu C, Jakusch T, Kiss T, Bertmer M, Salifoglou A. pH-Specific Hydrothermal Assembly of Binary and Ternary Pb(II)-(O,N-Carboxylic Acid) Metal Organic Framework Compounds: Correlation of Aqueous Solution Speciation with Variable Dimensionality Solid-State Lattice Architecture and Spectroscopic Signatures. Inorganic Chemistry 2012; 51: 9282-9296. DOI: 10.1021/ic300850g
  • 23. Ollivier PJ, DeBoard JRD, Zapf PJ, Zubieta J, Meyer LM, Wang C, Mallouk TE, Haushalter RC. Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar transition metal complexes. Journal of Molecular Structure 1998; 470: 49-60. DOI: 10.1016/S0022-2860(98)00469-4
  • 24. Kim D, Song X, Yoon JH, Lah MS. 3,6-Connected Metal-Organic Frameworks Based on Triscarboxylate as a 3-Connected Organic Node and a Linear Trinuclear Co3(COO)6 Secondary Building Unit as a 6-Connected Node. Crystal Growth & Design 2012; 12: 4186-4193. DOI: 10.1021/cg300686n
  • 25. Darling K, Ouellette W, Prosvirin A, Walter S, Dunbar KR, Zubieta J. Hydrothermal synthesis and structures of materials of the M(II)/tetrazole/sulfate family (M(II)=Co, Ni; tetrazole=3- and 4-pyridyltetrazole and pyrazinetetrazole). Polyhedron 2013; 58: 18-29. DOI: 10.1016/j.poly.2012.07.043
  • 26. Sun Y-X, Sun W-Y. Influence of temperature on metal-organic frameworks. Chinese Chemical Letters 2014; 25: 823-828. DOI: 10.1016/j.cclet.2014.04.032
  • 27. Liu G-X, Xu H, Zhou H, Nishihara S, Ren X-M. Temperature-induced assembly of MOF polymorphs: Syntheses, structures and physical properties. CrystEngComm 2012; 14: 1856-1864. DOI: 10.1039/c1ce05369h
  • 28. Calderone PJ, Banerjee D, Plonka AM, Kim SJ, Parise JB. Temperature dependent structure formation and photoluminescence studies of a series of magnesium-based coordination networks. Inorganica Chimica Acta 2013; 394: 452-458. DOI: 10.1016/j.ica.2012.08.033
  • 29. Mahata P, Prabu M, Natarajan S. Role of Temperature and Time in the Formation of Infinite -M-O-MLinkages and Isolated Clusters in MOFs: A Few Illustrative Examples. Inorganic Chemistry 2008; 47: 8451-8463. DOI: 10.1021/ic800621q
  • 30. Wenkin M, Touillaux R, Devillers M. Bismuth derivatives of 2,3-dicarboxypyrazine and 3,5-dicarboxypyrazole as precursors for bismuth oxide based materials. New Journal of Chemistry 1998; 22: 973-976. DOI:10.1039/A801161C
  • 31. Xu H, Ma H, Xu M, Zhao W, Guo B. catena-Poly[[[diaquairon(II)]-μ-pyrazine-2,3-dicarboxylato] dihydrate]. Acta Crystallographica Section E Structure Reports Online 2007; 64: m104-m104. Doi:10.1107/S1600536807064501
  • 32. Liu H-Y, Wang H-Y, Shi Y-H. Pyrazine-2,3-dicarboxylate-bridged polymeric and dinuclear complexes involving decameric water clusters. Journal of Coordination Chemistry 2011; 64: 2859-2868. DOI: 10.1080/00958972.2011.608161
  • 33. Okubo T, Kondo M, Kitagawa S. Synthesis, Structure, and Magnetic Properties of One-Dimensional Copper(II) Coordination Polymer,{[Cu(pyrazine-2,3-dicarboxylate)(H2O)2]2H2O}n. Synthetic Metals 1997; 85: 1661-1662. DOI: 10.1016/S0379-6779(97)80386-4
  • 34. Beobide G, Castillo O, Luque A, Garcia-Couceiro U, Garcia-Teran JP, Roma´n P. Supramolecular Architectures and Magnetic Properties of Coordination Polymers Based on Pyrazinedicarboxylato Ligands Showing Embedded Water Clusters. Inorganic Chemistry 2006; 45: 5367-5382. DOI: 10.1021/ic060221r
  • 35. Yeşilel OZ, Mutlu A, Büyükgüngör O. Novel dinuclear and polynuclear copper(II)-pyrazine-2,3-dicarboxylate supramolecular complexes with 1,3-propanediamine, N,N,N′,N′-tetramethylethylenediamine and 2,2′-bipyridine. Polyhedron 2009; 28: 437-444. DOI: 10.1016/j.poly.2008.11.044
  • 36. Yang K, Luo J-H, Liu Z-H. Synthesis, structures and luminescent property of two lanthanon complexes assembled from 2,3-pyrazinedicarboxylic acid and ammonia. Inorganica Chimica Acta 2012; 391: 206-209. DOI: 10.1016/j.ica.2012.04.040
  • 37. Zou J, Xu Z, Chen W, Lo KM, You X. Synthesis, structure and magnetic properties of new polymeric compounds containing manganese(II)–Pzdc (PzdcH : 2,3-Pyrazinedicarboxylic acid). Polyhedron 1999; 18: 1507-1512. DOI: 10.1016/S0277-5387(99)00019-4
  • 38. Yeşilel OZ, Mutlu A, Büyükgüngör O. A new coordination mode of pyrazine-2,3-dicarboxylic acid and its first monodentate complexes: Syntheses, spectral, thermal and structural characterization of [Cu(pzdca)(H2O)(en)2]•H2O and [Cu(pzdca)(H2O)(dmpen)2]. Polyhedron 2008; 27: 2471-2477. DOI: 10.1016/j.poly.2008.04.046
  • 39. Li X-H, Shi Q, Hu M-L, Xiao H-P. A crossing double chain {[Cu(PZDC2]•3(H2O)• 2(IDZC)}n (H2PZDC=2,3-pyrazinedicarboxylic acid, IDZC=imidazole cation). Inorganic Chemistry Communications 2004; 7: 912-914. DOI:10.1016/j.inoche.2004.05.017
  • 40. Bayon JC, Net G, Real J, Rasmussen PG. Synthesis and reactivity of rhodium(I) and iridium(I) complexes of the dianions of 2,3-pyrazinedicarboxylic and 2,5-pyrazinedicarboxylic acid. Journal of Organometallic Chemistry 1990; 385: 409-415. DOI: 10.1016/0022-328X(90)85012-N
  • 41. Wenkin M, Devillers M, Tinant B, Deelercq J-P. Diammine(pyrazine-2,3-dicarboxylato-N,O)palladium(II):synthesis, crystal structure, spectroscopic and thermal properties. Inorganica Chimica Acta 1997; 258: 113-118. DOI: 10.1016/S0020-1693(96)05533-8
  • 42. Yin H, Liu S-X. Syntheses, crystal structures and photoluminescence of three coordination polymers with 2,3-pyrazinedicarboxylic acid and N-donor ligands. Polyhedron 2007; 26: 3103-3111. DOI: 10.1016/j.poly.2007.02.011
  • 43. Yang L-R, Song S, Zhang W, Zhang H-M, Bu Z-W, Ren T-G. Synthesis, structure and luminescent properties of neodymium(III) coordination polymers with 2,3-pyrazinedicarboxylic acid. Synthetic Metals 2011; 161: 647-654. DOI:10.1016/j.synthmet.2010.12.005
  • 44. SMART DCS, version 5.630, Bruker-AXS Inc., Madison, WI, 1997-2002.
  • 45. SAINT PLUS DRS, version 6.45A, Bruker-AXS Inc., Madison, WI, 1997-2002.
  • 46. Sheldrick GM, University of Göttingen, Göttingen, Germany, 1996.
  • 47. SHELXTL PC v, Bruker-AXS Inc., Madison, WI, 2002.
  • 48. Yang Q, Xie G, Wei Q, Chen S, Gao S. Structures and standard molar enthalpies of formation of a series of Ln(III)–Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid. Journal of Solid State Chemistry 2014; 215: 26-33. DOI: 10.1016/j.jssc.2014.03.021
  • 49. Zhuang G, Chen W, Zeng G, Wang J, Chen W. Position of substituent dependent dimensionality in Ln-Cu heterometallic coordination polymers. CrystEngComm 2012; 14: 679-683. DOI: 10.1039/c1ce05864a
  • 50. Beaula TJ, Joe IH, Rastogi VK, Jothy VB. Chemical Computations and Vibrational Spectral Studies of 2,3-Pyrazinedicarboxylic Acid. Materials Today: Proceedings 2015; 2: 977-981. DOI: 10.1016/j.matpr.2015.06.020
  • 51. Sriramula VSB, Katreddi HR. Rare Earth Nitrate Complexes with an ONO Schiff Base Ligand:Spectral, Thermal, Luminescence and Biological Studies. Iranian Journal of Chemistry and Chemical Engineering 2017; 36: 101-109.
  • 52. Chen Y, Li H, Yue B, Liu Y, Chu H, Zhao Y. Synthesis, characterization and luminescent property of metal-ion-doped terbium complexes of 2,3-Pyrazinedicarboxylate. Journal of Luminescence 2012; 132: 1414-1419. DOI: 10.1016/j.jlumin.2012.01.030
  • 53. Zhao Q, Liu X-M, Li H-R, Zhang Y-H, Bu X-H. High-performance fluorescence sensing of lanthanum ions (La3+) by a polydentate pyridyl-based quinoxaline derivative. Dalton Transactions 2016; 45: 10836-10841. DOI: 10.1039/c6dt01161f
  • 54. Yin H, Liu S. Copper and zinc complexes with 2,3-pyridinedicarboxylic acid or 2,3-pyrazinedicarboxylic acid: Polymer structures and magnetic properties. Journal of Molecular Structure 2009; 918: 165-173. DOI: 10.1016/j.molstruc.2008.07.033
  • 55. Mahata P, Ramya KV, Natarajan S. Synthesis, structure and optical properties of rare-earth benzene carboxylates. Dalton Transactions 2007: 4017-4026. DOI: 10.1039/b706363f
  • 56. Santiago-González B, Vázquez-Vázquez C, Blanco-Varela MC, Gaspar Martinho JM, Ramallo-López JM, Requejo FG, López-Quintela MA. Synthesis of water-soluble gold clusters in nanosomes displaying robust photoluminescence with very large Stokes shift. Journal of Colloid and Interface Science 2015; 455: 154-162. DOI: 10.1016/j.jcis.2015.05.042
  • 57. Raj PJ, Bahulayan D. “MCR-Click” synthesis of coumarin-tagged macrocycles with large Stokes shift values and cytotoxicity against human breast cancer cell line MCF-7. Tetrahedron Letters 2017; 58: 2122-2126. DOI: 10.1016/j.tetlet.2017.04.052
  • 58. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Advances 2015; 5: 37553-37567. DOI: 10.1039/c5ra01851j
Year 2020, Volume: 7 Issue: 1, 243 - 258, 15.02.2020
https://doi.org/10.18596/jotcsa.565700

Abstract

Project Number

FEF2013D5

References

  • 1. Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chemical Society Reviews 2014; 43: 6141-6172. DOI: 10.1039/c4cs00135d
  • 2. Zhou X, Liu P, Huang W-H, Kang M, Wang Y-Y, Shi Q-Z. Solvents influence on sizes of channels in three fry topological Mn(II)-MOFs based on metal–carboxylate chains: syntheses, structures and magnetic properties. CrystEngComm 2013; 15: 8125-8133. DOI: 10.1039/C3CE41120F
  • 3. Wang P, Fan R-Q, Liu X-R, Wang L-Y, Yang Y-L, Cao W-W, Yang B, Hasi W, Su Q, Mu Y. Two-/three-dimensional open lanthanide-organic frameworks containing rigid/flexible dicarboxylate ligands: synthesis, crystal structure and photoluminescent properties. CrystEngComm 2013; 15: 1931-1949. DOI: 10.1039/c3ce26684b
  • 4. Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal-organic frameworks as heterogeneous catalysts. Chemical Communications 2012; 48: 11275-11289. DOI: 10.1039/c2cc34329k
  • 5. Nguyen LTL, Le KKA, Truong HX, Phan NTS. Metal-organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology 2012; 2: 521-528. DOI: 10.1039/c1cy00386k
  • 6. Tan Y-X, He Y-P, Zhang J. Cluster-Organic Framework Materials as Heterogeneous Catalysts for High Efficient Addition Reaction of Diethylzinc to Aromatic Aldehydes. Chemistry of Materials 2012; 24: 4711-4716. DOI:10.1021/cm302953x
  • 7. Tian D, Li Y, Chen R-Y, Chang Z, Wang G-Y, Bu X-H. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives. Journal of Materials Chemistry A 2014; 2: 1465-1470. DOI: 10.1039/c3ta13983b
  • 8. Guo Y, Feng X, Han T, Wang S, Lin Z, Dong Y, Wang B. Tuning the Luminescence of Metal-Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society 2014; 136: 15485-15488. DOI: 10.1021/ja508962m
  • 9. Kim TK, Lee JH, Moon D, Moon HR. Luminescent Li-Based Metal-Organic Framework Tailored for the Selective Detection of Explosive Nitroaromatic Compounds: Direct Observation of Interaction Sites. Inorganic Chemistry 2012; 52: 589-595. DOI: 10.1021/ic3011458
  • 10. Gándara F, Furukawa H, Lee S, Yaghi OM. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks. Journal of the American Chemical Society 2014; 136: 5271-5274. DOI: 10.1021/ja501606h
  • 11. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T. Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges. Journal of the American Chemical Society 2013; 135: 11887-11894. DOI: 10.1021/ja4045289
  • 12. Li Y-W, Li J-R, Wang L-F, Zhou B-Y, Chen Q, Bu X-H. Microporous metal-organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. Journal of Materials Chemistry A 2013; 1: 495-499. DOI: 10.1039/c2ta00635a
  • 13. Bloch ED, Hudson MR, Mason JA, Chavan S, Crocellà V, Howe JD, Lee K, Dzubak AL, Queen WL, Zadrozny JM, Geier SJ, Lin L-C, Gagliardi L, Smit B, Neaton JB, Bordiga S, Brown CM, Long JR. Reversible CO Binding Enables Tunable CO/H2 and CO/N2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations. Journal of the American Chemical Society 2014; 136: 10752-10761. DOI: 10.1021/ja505318p
  • 14. Dou Z, Yu J, Cui Y, Yang Y, Wang Z, Yang D, Qian G. Luminescent Metal-Organic Framework Films As Highly Sensitive and Fast-Response Oxygen Sensors. Journal of the American Chemical Society 2014; 136: 5527-5530. DOI: 10.1021/ja411224j
  • 15. Cunha D, Ben Yahia M, Hall S, Miller SR, Chevreau H, Elkaïm E, Maurin G, Horcajada P, Serre C. Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks. Chemistry of Materials 2013; 25: 2767-2776. DOI: 10.1021/cm400798p
  • 16. Seetharaj R, Vandana PV, Arya P, Mathew S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 2016; 12: 295-315. DOI: 10.1016/j.arabjc.2016.01.003
  • 17. Li P-Z, Wang X-J, Li Y, Zhang Q, Tan RHD, Lim WQ, Ganguly R, Zhao Y. Co(II)-tricarboxylate metal-organic frameworks constructed from solvent-directed assembly for CO2 adsorption. Microporous and Mesoporous Materials 2013; 176: 194-198. DOI: 10.1016/j.micromeso.2013.03.052
  • 18. Sun F, Zhu G. Solvent-directed synthesis of chiral and non-centrosymmetric metal-organic frameworks based on pyridine-3,5-dicarboxylate. Inorganic Chemistry Communications 2013; 38: 115-118. DOI: 10.1016/j.inoche.2013.10.018
  • 19. Liu T, Luo D, Xu D, Zeng H, Lin Z. Solvent induced structural variation in magnesium carboxylate frameworks. Inorganic Chemistry Communications 2013; 29: 110-113. DOI: 10.1016/j.inoche.2012.12.017
  • 20. Chen L, Jia H-Y, Hong X-J, Chen D-H, Zheng Z-P, Jin H-G, Gu Z-G, Cai Y-P. Construction of one pH-independent 3-D pillar-layer lead-organic framework containing tetrazole-1-acetic acid. Inorganic Chemistry Communications 2013; 27: 22-25. DOI: 10.1016/j.inoche.2012.10.010
  • 21. Li S-L, Tan K, Lan Y-Q, Qin J-S, Li M-N, Du D-Y, Zang H-Y, Su Z-M. pH-Dependent Binary Metal-Organic Compounds Assembled from Different Helical Units: Structural Variation and Supramolecular Isomers. Crystal Growth & Design 2010; 10: 1699-1705. DOI: 10.1021/cg9012763
  • 22. Gabriel C, Perikli M, Raptopoulou CP, Terzis A, Psycharis V, Mateescu C, Jakusch T, Kiss T, Bertmer M, Salifoglou A. pH-Specific Hydrothermal Assembly of Binary and Ternary Pb(II)-(O,N-Carboxylic Acid) Metal Organic Framework Compounds: Correlation of Aqueous Solution Speciation with Variable Dimensionality Solid-State Lattice Architecture and Spectroscopic Signatures. Inorganic Chemistry 2012; 51: 9282-9296. DOI: 10.1021/ic300850g
  • 23. Ollivier PJ, DeBoard JRD, Zapf PJ, Zubieta J, Meyer LM, Wang C, Mallouk TE, Haushalter RC. Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar transition metal complexes. Journal of Molecular Structure 1998; 470: 49-60. DOI: 10.1016/S0022-2860(98)00469-4
  • 24. Kim D, Song X, Yoon JH, Lah MS. 3,6-Connected Metal-Organic Frameworks Based on Triscarboxylate as a 3-Connected Organic Node and a Linear Trinuclear Co3(COO)6 Secondary Building Unit as a 6-Connected Node. Crystal Growth & Design 2012; 12: 4186-4193. DOI: 10.1021/cg300686n
  • 25. Darling K, Ouellette W, Prosvirin A, Walter S, Dunbar KR, Zubieta J. Hydrothermal synthesis and structures of materials of the M(II)/tetrazole/sulfate family (M(II)=Co, Ni; tetrazole=3- and 4-pyridyltetrazole and pyrazinetetrazole). Polyhedron 2013; 58: 18-29. DOI: 10.1016/j.poly.2012.07.043
  • 26. Sun Y-X, Sun W-Y. Influence of temperature on metal-organic frameworks. Chinese Chemical Letters 2014; 25: 823-828. DOI: 10.1016/j.cclet.2014.04.032
  • 27. Liu G-X, Xu H, Zhou H, Nishihara S, Ren X-M. Temperature-induced assembly of MOF polymorphs: Syntheses, structures and physical properties. CrystEngComm 2012; 14: 1856-1864. DOI: 10.1039/c1ce05369h
  • 28. Calderone PJ, Banerjee D, Plonka AM, Kim SJ, Parise JB. Temperature dependent structure formation and photoluminescence studies of a series of magnesium-based coordination networks. Inorganica Chimica Acta 2013; 394: 452-458. DOI: 10.1016/j.ica.2012.08.033
  • 29. Mahata P, Prabu M, Natarajan S. Role of Temperature and Time in the Formation of Infinite -M-O-MLinkages and Isolated Clusters in MOFs: A Few Illustrative Examples. Inorganic Chemistry 2008; 47: 8451-8463. DOI: 10.1021/ic800621q
  • 30. Wenkin M, Touillaux R, Devillers M. Bismuth derivatives of 2,3-dicarboxypyrazine and 3,5-dicarboxypyrazole as precursors for bismuth oxide based materials. New Journal of Chemistry 1998; 22: 973-976. DOI:10.1039/A801161C
  • 31. Xu H, Ma H, Xu M, Zhao W, Guo B. catena-Poly[[[diaquairon(II)]-μ-pyrazine-2,3-dicarboxylato] dihydrate]. Acta Crystallographica Section E Structure Reports Online 2007; 64: m104-m104. Doi:10.1107/S1600536807064501
  • 32. Liu H-Y, Wang H-Y, Shi Y-H. Pyrazine-2,3-dicarboxylate-bridged polymeric and dinuclear complexes involving decameric water clusters. Journal of Coordination Chemistry 2011; 64: 2859-2868. DOI: 10.1080/00958972.2011.608161
  • 33. Okubo T, Kondo M, Kitagawa S. Synthesis, Structure, and Magnetic Properties of One-Dimensional Copper(II) Coordination Polymer,{[Cu(pyrazine-2,3-dicarboxylate)(H2O)2]2H2O}n. Synthetic Metals 1997; 85: 1661-1662. DOI: 10.1016/S0379-6779(97)80386-4
  • 34. Beobide G, Castillo O, Luque A, Garcia-Couceiro U, Garcia-Teran JP, Roma´n P. Supramolecular Architectures and Magnetic Properties of Coordination Polymers Based on Pyrazinedicarboxylato Ligands Showing Embedded Water Clusters. Inorganic Chemistry 2006; 45: 5367-5382. DOI: 10.1021/ic060221r
  • 35. Yeşilel OZ, Mutlu A, Büyükgüngör O. Novel dinuclear and polynuclear copper(II)-pyrazine-2,3-dicarboxylate supramolecular complexes with 1,3-propanediamine, N,N,N′,N′-tetramethylethylenediamine and 2,2′-bipyridine. Polyhedron 2009; 28: 437-444. DOI: 10.1016/j.poly.2008.11.044
  • 36. Yang K, Luo J-H, Liu Z-H. Synthesis, structures and luminescent property of two lanthanon complexes assembled from 2,3-pyrazinedicarboxylic acid and ammonia. Inorganica Chimica Acta 2012; 391: 206-209. DOI: 10.1016/j.ica.2012.04.040
  • 37. Zou J, Xu Z, Chen W, Lo KM, You X. Synthesis, structure and magnetic properties of new polymeric compounds containing manganese(II)–Pzdc (PzdcH : 2,3-Pyrazinedicarboxylic acid). Polyhedron 1999; 18: 1507-1512. DOI: 10.1016/S0277-5387(99)00019-4
  • 38. Yeşilel OZ, Mutlu A, Büyükgüngör O. A new coordination mode of pyrazine-2,3-dicarboxylic acid and its first monodentate complexes: Syntheses, spectral, thermal and structural characterization of [Cu(pzdca)(H2O)(en)2]•H2O and [Cu(pzdca)(H2O)(dmpen)2]. Polyhedron 2008; 27: 2471-2477. DOI: 10.1016/j.poly.2008.04.046
  • 39. Li X-H, Shi Q, Hu M-L, Xiao H-P. A crossing double chain {[Cu(PZDC2]•3(H2O)• 2(IDZC)}n (H2PZDC=2,3-pyrazinedicarboxylic acid, IDZC=imidazole cation). Inorganic Chemistry Communications 2004; 7: 912-914. DOI:10.1016/j.inoche.2004.05.017
  • 40. Bayon JC, Net G, Real J, Rasmussen PG. Synthesis and reactivity of rhodium(I) and iridium(I) complexes of the dianions of 2,3-pyrazinedicarboxylic and 2,5-pyrazinedicarboxylic acid. Journal of Organometallic Chemistry 1990; 385: 409-415. DOI: 10.1016/0022-328X(90)85012-N
  • 41. Wenkin M, Devillers M, Tinant B, Deelercq J-P. Diammine(pyrazine-2,3-dicarboxylato-N,O)palladium(II):synthesis, crystal structure, spectroscopic and thermal properties. Inorganica Chimica Acta 1997; 258: 113-118. DOI: 10.1016/S0020-1693(96)05533-8
  • 42. Yin H, Liu S-X. Syntheses, crystal structures and photoluminescence of three coordination polymers with 2,3-pyrazinedicarboxylic acid and N-donor ligands. Polyhedron 2007; 26: 3103-3111. DOI: 10.1016/j.poly.2007.02.011
  • 43. Yang L-R, Song S, Zhang W, Zhang H-M, Bu Z-W, Ren T-G. Synthesis, structure and luminescent properties of neodymium(III) coordination polymers with 2,3-pyrazinedicarboxylic acid. Synthetic Metals 2011; 161: 647-654. DOI:10.1016/j.synthmet.2010.12.005
  • 44. SMART DCS, version 5.630, Bruker-AXS Inc., Madison, WI, 1997-2002.
  • 45. SAINT PLUS DRS, version 6.45A, Bruker-AXS Inc., Madison, WI, 1997-2002.
  • 46. Sheldrick GM, University of Göttingen, Göttingen, Germany, 1996.
  • 47. SHELXTL PC v, Bruker-AXS Inc., Madison, WI, 2002.
  • 48. Yang Q, Xie G, Wei Q, Chen S, Gao S. Structures and standard molar enthalpies of formation of a series of Ln(III)–Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid. Journal of Solid State Chemistry 2014; 215: 26-33. DOI: 10.1016/j.jssc.2014.03.021
  • 49. Zhuang G, Chen W, Zeng G, Wang J, Chen W. Position of substituent dependent dimensionality in Ln-Cu heterometallic coordination polymers. CrystEngComm 2012; 14: 679-683. DOI: 10.1039/c1ce05864a
  • 50. Beaula TJ, Joe IH, Rastogi VK, Jothy VB. Chemical Computations and Vibrational Spectral Studies of 2,3-Pyrazinedicarboxylic Acid. Materials Today: Proceedings 2015; 2: 977-981. DOI: 10.1016/j.matpr.2015.06.020
  • 51. Sriramula VSB, Katreddi HR. Rare Earth Nitrate Complexes with an ONO Schiff Base Ligand:Spectral, Thermal, Luminescence and Biological Studies. Iranian Journal of Chemistry and Chemical Engineering 2017; 36: 101-109.
  • 52. Chen Y, Li H, Yue B, Liu Y, Chu H, Zhao Y. Synthesis, characterization and luminescent property of metal-ion-doped terbium complexes of 2,3-Pyrazinedicarboxylate. Journal of Luminescence 2012; 132: 1414-1419. DOI: 10.1016/j.jlumin.2012.01.030
  • 53. Zhao Q, Liu X-M, Li H-R, Zhang Y-H, Bu X-H. High-performance fluorescence sensing of lanthanum ions (La3+) by a polydentate pyridyl-based quinoxaline derivative. Dalton Transactions 2016; 45: 10836-10841. DOI: 10.1039/c6dt01161f
  • 54. Yin H, Liu S. Copper and zinc complexes with 2,3-pyridinedicarboxylic acid or 2,3-pyrazinedicarboxylic acid: Polymer structures and magnetic properties. Journal of Molecular Structure 2009; 918: 165-173. DOI: 10.1016/j.molstruc.2008.07.033
  • 55. Mahata P, Ramya KV, Natarajan S. Synthesis, structure and optical properties of rare-earth benzene carboxylates. Dalton Transactions 2007: 4017-4026. DOI: 10.1039/b706363f
  • 56. Santiago-González B, Vázquez-Vázquez C, Blanco-Varela MC, Gaspar Martinho JM, Ramallo-López JM, Requejo FG, López-Quintela MA. Synthesis of water-soluble gold clusters in nanosomes displaying robust photoluminescence with very large Stokes shift. Journal of Colloid and Interface Science 2015; 455: 154-162. DOI: 10.1016/j.jcis.2015.05.042
  • 57. Raj PJ, Bahulayan D. “MCR-Click” synthesis of coumarin-tagged macrocycles with large Stokes shift values and cytotoxicity against human breast cancer cell line MCF-7. Tetrahedron Letters 2017; 58: 2122-2126. DOI: 10.1016/j.tetlet.2017.04.052
  • 58. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Advances 2015; 5: 37553-37567. DOI: 10.1039/c5ra01851j
There are 58 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Burak Ay 0000-0001-7055-8139

Emel Yıldız 0000-0002-3169-491X

Jon Zubieta This is me 0000-0003-2478-7867

Project Number FEF2013D5
Publication Date February 15, 2020
Submission Date May 15, 2019
Acceptance Date December 18, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

Vancouver Ay B, Yıldız E, Zubieta J. pH effect on hydrothermal synthesis of the coordination polymers containing pyrazine-2,3-dicarboxylate: Investigation of thermal stability, luminescence and electrical conductivity properties. JOTCSA. 2020;7(1):243-58.