Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 7 Sayı: 2, 351 - 360, 23.06.2020
https://doi.org/10.18596/jotcsa.568062

Öz

Kaynakça

  • 1. Hohenberg P, Kohn W. Phys. Rev. 1964; 136: B864.
  • 2. Kohn W, Sham L J. Phys. Rev. 1965; 140: A1133.
  • 3. Harvey J N. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2006; 102: 203.
  • 4. Fey N, Ridgway B M, Jover J, McMullin C L, Harvey J N, Dalton Trans. 2011; 40: 11184.
  • 5. Chermette H. Coord. Chem. ReV. 1998; 178: 699.
  • 6. Dykstra C E, Frending G, Kim K S, Scuseria G E, Editors. Theory and Applications of Computational Chemistry: The First Forty Years. Amsterdam: Elsevier; 2005, 1336 p. ISBN: 9780444517197.
  • 7. Davidson E R. Chem. ReV. 2000; 100: 351.
  • 8. Zhao Y, Truhlar D G. J. Chem. Phys. 2006: 124.
  • 9. Schultz N E, Zhao Y, Truhlar D G. J. Phys. Chem. A. 2005; 109: 11127.
  • 10. Furche F, Perdew J P J. Chem. Phys. 2006; 124: 044103.
  • 11. Kameno Y, Ikeda A, Nakao Y, Sato H, Sakaki S. J. Phys. Chem. A. 2005; 109: 8055.
  • 12. Osipov A L, Gerdov S M, Kuzmina L G, Howard J A K, Nikonov G I. Organometallics. 2005; 24: 577-602.
  • 13. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J J, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A. J. Comput. Chem. 1993; 14: 1347-1363.
  • 14. Yanai T, Tew D P, Handy N C. Chemical Physics Letters. 2004; Vol 393, Issues 1-3: pages 51-57.
  • 15. Stevens W J, Krauss M, Bash H, Jasien P G. Can. J. Chem. 1992; 70: 612.
  • 16. Binkley J S, Pople J A, Hehre W J. Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements. J. Amer. Chem. Soc. 1980; 102: 939.
  • 17. Hehre W J, Stewart R F, Pople J A. J. Chem. Phys. 1969; 51: 2657.
  • 18. Collins J B, Schleyer P V R, Binkley J S, Pople J A. Self-Consistent Molecular Orbital Methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys. 1976; 64: 5142.
  • 19. Gordon M S, Binkley J S, Pople J A, Pietro W J, Hehre W J. Self-Consistent Molecular-Orbital Methods. 22: Small Split-Valence Basis Sets for Second-Row Elements. J. Amer. Chem. Soc. 1982; 104: 2797.

A Comparative DFT Study for Ruthenium

Yıl 2020, Cilt: 7 Sayı: 2, 351 - 360, 23.06.2020
https://doi.org/10.18596/jotcsa.568062

Öz

Here, a comparative DFT study of a transition metal
complex, (pentamethylcyclopentadienyl) (diisopropylmethylphosphine) (chloro)
(trichlorosilyl) rutheniumhydride, is reported. The molecule contains a Ruthenium
(Ru) atom, which is hard to be handled computationally, just like other
transition metals. Every calculation had started from the same point in state
space (exact same atomic configurations of the molecule), and used the same
computational resources (same software and hardware with same parameters), but
five different basis sets; those are, Sapporo Non Relativistic SPK DZP, SBKJ,
3-21G, STO3G and STO6G. Molecule have been optimised for five times with these
basis sets. Results have been compared to X-RAY data of the molecule to reveal
the performances of these five approximation methods about handling a molecule
that contains a transition metal like Ruthenium. It has been found that,
unexpectedly, a computationally cheaper method has won the competition and has
shown best performance among the others. 

Kaynakça

  • 1. Hohenberg P, Kohn W. Phys. Rev. 1964; 136: B864.
  • 2. Kohn W, Sham L J. Phys. Rev. 1965; 140: A1133.
  • 3. Harvey J N. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2006; 102: 203.
  • 4. Fey N, Ridgway B M, Jover J, McMullin C L, Harvey J N, Dalton Trans. 2011; 40: 11184.
  • 5. Chermette H. Coord. Chem. ReV. 1998; 178: 699.
  • 6. Dykstra C E, Frending G, Kim K S, Scuseria G E, Editors. Theory and Applications of Computational Chemistry: The First Forty Years. Amsterdam: Elsevier; 2005, 1336 p. ISBN: 9780444517197.
  • 7. Davidson E R. Chem. ReV. 2000; 100: 351.
  • 8. Zhao Y, Truhlar D G. J. Chem. Phys. 2006: 124.
  • 9. Schultz N E, Zhao Y, Truhlar D G. J. Phys. Chem. A. 2005; 109: 11127.
  • 10. Furche F, Perdew J P J. Chem. Phys. 2006; 124: 044103.
  • 11. Kameno Y, Ikeda A, Nakao Y, Sato H, Sakaki S. J. Phys. Chem. A. 2005; 109: 8055.
  • 12. Osipov A L, Gerdov S M, Kuzmina L G, Howard J A K, Nikonov G I. Organometallics. 2005; 24: 577-602.
  • 13. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J J, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A. J. Comput. Chem. 1993; 14: 1347-1363.
  • 14. Yanai T, Tew D P, Handy N C. Chemical Physics Letters. 2004; Vol 393, Issues 1-3: pages 51-57.
  • 15. Stevens W J, Krauss M, Bash H, Jasien P G. Can. J. Chem. 1992; 70: 612.
  • 16. Binkley J S, Pople J A, Hehre W J. Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements. J. Amer. Chem. Soc. 1980; 102: 939.
  • 17. Hehre W J, Stewart R F, Pople J A. J. Chem. Phys. 1969; 51: 2657.
  • 18. Collins J B, Schleyer P V R, Binkley J S, Pople J A. Self-Consistent Molecular Orbital Methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys. 1976; 64: 5142.
  • 19. Gordon M S, Binkley J S, Pople J A, Pietro W J, Hehre W J. Self-Consistent Molecular-Orbital Methods. 22: Small Split-Valence Basis Sets for Second-Row Elements. J. Amer. Chem. Soc. 1982; 104: 2797.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnorganik Kimya
Bölüm Makaleler
Yazarlar

Nil Ertekin Binbay 0000-0002-2488-0378

Yayımlanma Tarihi 23 Haziran 2020
Gönderilme Tarihi 21 Mayıs 2019
Kabul Tarihi 14 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 2

Kaynak Göster

Vancouver Binbay NE. A Comparative DFT Study for Ruthenium. JOTCSA. 2020;7(2):351-60.