Derleme
BibTex RIS Kaynak Göster

Chitosan-drug encapsulation as a potential candidate for COVID-19 drug delivery systems: A review

Yıl 2020, Cilt: 7 Sayı: 3, 851 - 864, 30.10.2020
https://doi.org/10.18596/jotcsa.773780

Öz

Since the outbreak of COVID-19, the World Health Organization (WHO), Centre for Disease Control (CDC), and other health organizations around the world have coordinated the flow of information and given out preventive directives measures and guidelines to reduce the impact and spread of the disease. Meanwhile, bodies of scientists and researchers around the world are still working ceaselessly to study the virus, mode of transmission mechanisms, and are rapidly developing therapeutic antiviral drugs and vaccines. Thus, the urgent need for the fabrication of biocompatible and biodegradable composite materials as drug delivery vehicles for the efficient loading, targeted delivery and controlled release of antiviral drugs to the target site is been inspired. Therefore, this review highlights the antimicrobial and antiviral activities of chitosan as well as the potency of a combined therapy via electrostatic/hydrogen bonding encapsulation onto the WHO suggested clinical trial drugs and possible chelation with metal ions to form new improved antiviral compounds as a promising agent for the targeted drug delivery.

Destekleyen Kurum

Southeast University, China

Proje Numarası

N/A

Teşekkür

China Scholarship Council

Kaynakça

  • 1. Fang L, Karakiulakis G, Roth M. Antihypertensive drugs and risk of COVID-19? – Authors’ reply. Lancet Respir Med [Internet]. 2020;2600(20):19–20. Available from: http://dx.doi.org/10.1016/S2213-2600(20)30159-4
  • 2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.
  • 3. Das UN. Can Bioactive Lipids Inactivate Coronavirus (COVID-19)? Arch Med Res [Internet]. 2020; Available from: https://doi.org/10.1016/j.arcmed.2020.03.004
  • 4. Mackenzie JS, Smith DW. COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don’t. Microbiol Aust. 2020;
  • 5. Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun [Internet]. 2020;102434. Available from: https://doi.org/10.1016/j.jaut.2020.102434
  • 6. McCuaig C. What We Know So Far (As of March 26, 2020) About COVID-19 – An MRT Point of View. J Med Imaging Radiat Sci [Internet]. 2020; Available from: http://www.sciencedirect.com/science/article/pii/S1939865420300394
  • 7. Driggin E, Madhavan M V., Bikdeli B, Chuich T, Laracy J, Bondi-Zoccai G, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J Am Coll Cardiol [Internet]. 2020;2019. Available from: https://doi.org/10.1016/j.jacc.2020.03.031
  • 8. Zarracina J, Rodriguez A. A visual guide of coronavirus infection, symptoms of COVID-19 and the effects of the virus inside the body, in graphics. USA TODAY [Internet]. 2020 Mar 17; Available from: https://www.usatoday.com/in-depth/news/2020/03/13/what-coronavirus-does-body-covid-19-infection-process-symptoms/5009057002/
  • 9. Yan Bai, Yao L, Wei T, Tian F, Jin D-Y, Chen L, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. letters. 2020;382(13):1199–207.
  • 10. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect [Internet]. 2020;2(xxxx). Available from: https://doi.org/10.1016/j.jmii.2020.02.012
  • 11. World Health Organization (WHO). What is the WHO position on the use of chloroquine and hydroxylchloroquine in the context of the COVID-19 response? [Internet]. 2020 [cited 2020 Apr 13]. Available from: https://www.who.int/news-room/q-a-detail/malaria-and-the-covid-19-pandemic
  • 12. World Health Organization. 19th WHO Model List of Essential Medicines. Http://WwwWhoInt/Medicines/Publications/Essentialmedicines/En [Internet]. 2015;1–43. Available from: http://www.who.int/medicines/organization/par/edl/expcom13/eml13%7B_%7Den.pdf
  • 13. Kandeel M, Al-Nazawi M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci [Internet]. 2020;251:117627. Available from: https://doi.org/10.1016/j.lfs.2020.117627
  • 14. Smith T, Bushek J, LeClaire A, Prosser T. COVID-19 Drug Therapy. Elsevier - Nov Coronavirus Inf Cent [Internet]. 2020;(CDC):1–21. Available from: https://www.elsevier.com/connect/coronavirus-information-center#research
  • 15. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care [Internet]. 2020;3–7. Available from: https://doi.org/10.1016/j.jcrc.2020.03.005
  • 16. Duan Y, Zhu H-L, Zhou C. Advance of promising targets and agents against 2019-nCoV in China. Drug Discov Today [Internet]. 2020;00(00):10–2. Available from: https://doi.org/10.1016/j.drudis.2020.02.011
  • 17. Choy K-T, Yin-Lam Wong A, Kaewpreedee P, Sia S-F, Chen D, Yan Hui KP, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res [Internet]. 2020;104786. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32251767
  • 18. Smereka J, Szarpak L. COVID 19 a challenge for emergency medicine and every health care professional. Am J Emerg Med. 2020;(xxxx):2–3.
  • 19. Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses : A Review of Virus – Host Interactions. Diseases. 2016;4(26):1–28.
  • 20. Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, et al. Recent Progress in understanding 2019 Novel Coronavirus associated with Human Respiratory Disease: Detection, Mechanism and Treatment. Int J Antimicrob Agents [Internet]. 2020;105950. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105950
  • 21. Wu C-I, Postema PG, Arbelo E, Behr ER, Bezzina CR, Napolitano C, et al. SARS-CoV-2, COVID-19 and inherited arrhythmia syndromes. Hear Rhythm [Internet]. 2020; Available from: http://www.sciencedirect.com/science/article/pii/S154752712030285X
  • 22. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101(12):4240–5.
  • 23. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol [Internet]. 2016;14(8):523–34. Available from: http://dx.doi.org/10.1038/nrmicro.2016.81
  • 24. Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439–50.
  • 25. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal [Internet]. 2020;19(xxxx):1–7. Available from: https://doi.org/10.1016/j.jpha.2020.03.001
  • 26. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;
  • 27. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol. 2003;41(4):1548–57.
  • 28. Lee EYP, Ng MY, Khong PL. COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis. 2020;20(4):384–5.
  • 29. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;1–8.
  • 30. Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model. bioRxiv [Internet]. 2020;18:2020.01.31.929547. Available from: https://www.biorxiv.org/content/biorxiv/early/2020/02/02/2020.01.31.929547.full.pdf
  • 31. Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol. 2019;73(1).
  • 32. Srivastava V, Lee H. Chloroquine-based hybrid molecules as promising novel chemotherapeutic agents. Eur J Pharmacol [Internet]. 2015;762:472–86. Available from: http://dx.doi.org/10.1016/j.ejphar.2015.04.048
  • 33. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents [Internet]. 2020;105938. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105938
  • 34. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin Immunol [Internet]. 2020;214:108393. Available from: https://doi.org/10.1016/j.clim.2020.108393
  • 35. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res [Internet]. 2020;177:104762. Available from: https://doi.org/10.1016/j.antiviral.2020.104762
  • 36. Kashyap A, Kaur R, Baldi A, Kumar U, Chandra R, Madan J. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. Int J Biol Macromol [Internet]. 2018;114:161–8. Available from: https://doi.org/10.1016/j.ijbiomac.2018.03.102
  • 37. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;10:1–10.
  • 38. Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Chan PKS, et al. Evaluation of immunomodulators , interferons and known in vitro SARS-CoV inhibitors for inhibition of SARS-CoV replication in BALB / c mice. Antivir Chem Chemother. 2006;275–84.
  • 39. Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct. 2016;191–6.
  • 40. Lecuit M. Chloroquine and COVID-19, where do we stand? Médecine Mal Infect [Internet]. 2020;3–4. Available from: https://doi.org/10.1016/j.medmal.2020.03.004
  • 41. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents [Internet]. 2020;(xxxx):105932. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105932
  • 42. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr Clin Res Rev [Internet]. 2020;14(3):241–6. Available from: https://doi.org/10.1016/j.dsx.2020.03.011
  • 43. Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus. Int J Antimicrob Agents [Internet]. 2020;105923. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105923
  • 44. Lu H. Drug treatment options for the 2019-new coronavirus (2019- nCoV). Biosci Trends. 2020;P1–3.
  • 45. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Main point : Hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clin Infect Dis. 2020;2:1–25.
  • 46. Picot S, Marty A, Bienvenu A-L, Blumberg LH, Dupouy-Camet J, Carnevale P, et al. Coalition: Advocacy for prospective clinical trials to test the post-exposure potential of hydroxychloroquine against COVID-19. One Heal [Internet]. 2020; Available from: https://doi.org/10.1016/j.onehlt.2020.100131
  • 47. Gabriels J, Saleh M, Chang D, Epstein LM. Inpatient Use of Mobile Continuous Telemetry for COVID-19 Patients Treated with Hydroxychloroquine and Azithromycin. Hear Case Reports [Internet]. 2020;(PG-). Available from: http://www.sciencedirect.com/science/article/pii/S2214027120300580 NS -
  • 48. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents [Internet]. 2020;105949. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105949
  • 49. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.
  • 50. Meynard JL, Moinot L, Landman R, Morand-Joubert L, Besseghir A, Kolta S, et al. Week 96 efficacy of lopinavir/ritonavir monotherapy in virologically suppressed patients with HIV: A randomized non-inferiority trial (ANRS 140 DREAM). J Antimicrob Chemother. 2018;73(6):1672–6.
  • 51. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59(3):252–6.
  • 52. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering [Internet]. 2020;(xxxx):4–10. Available from: https://doi.org/10.1016/j.eng.2020.03.007
  • 53. Lythgoe MP, Middleton P. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol Sci [Internet]. 2020;xx(xx):1–20. Available from: https://doi.org/10.1016/j.tips.2020.03.006
  • 54. Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci [Internet]. 2020;117592. Available from: https://doi.org/10.1016/j.lfs.2020.117592
  • 55. Baron SA, Devaux C, Colson P, Raoult D, Rolain J-M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents [Internet]. 2020;2(xxxx):105944. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105944
  • 56. Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178. 57. Chan JFW, Yao Y, Yeung M-L, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a non-human primate model of common marmoset. J Infecteous Dis. 2015;212(12):1904–13.
  • 58. Brown BL, Mccullough J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus Apher Sci [Internet]. 2020;102790. Available from: https://doi.org/10.1016/j.transci.2020.102790
  • 59. Mohamed T, El-aziz A, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus ( SARS-CoV-2 ) - an update on the status. Infect Genet Evol [Internet]. 2020;83:104327. Available from: https://doi.org/10.1016/j.meegid.2020.104327
  • 60. Tripathy S, Kar S, Chattopadhyay S, Das S. A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop [Internet]. 2013;128(3):494–503. Available from: http://dx.doi.org/10.1016/j.actatropica.2013.07.011
  • 61. Adewuyi S, Sanyaolu NO, Amolegbe SA, Sobola AO, Folarin OM. Poly[β-(1→4)-2-amino-2-deoxy-D-ghicopyranose] based zero valent nickel nanocomposite for efficient reduction of nitrate in water. J Environ Sci (China). 2012;24(9):1702–8.
  • 62. Ahmed F, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Res Vet Sci [Internet]. 2019;126:68–82. Available from: https://doi.org/10.1016/j.rvsc.2019.08.005
  • 63. Chylińska M, Kaczmarek H, Burkowska-But A. Preparation and characteristics of antibacterial chitosan films modified with N-halamine for biomedical application. Colloids Surfaces B Biointerfaces. 2019;176:379–86.
  • 64. Ejeromedoghene, Onome., Alayande, J. Olalekan., Olatunji, D. Emmanuel ., Alli , A. Yakubu., and Adewuyi S. Synthesis of Chitosan-Zirconium(IV) Complexes as an Antifungal Spraying Agent Against Tomato Infected Aspergillus Niger. J Chem Soc Niger [Internet]. 2019;44(1):125–9. Available from: http://journals.chemsociety.org.ng/index.php/jcsn/article/view/253
  • 65. Wang X, Du Y, Fan L, Liu H, Hu Y. Chitosan- metal complexes as antimicrobial agent : Synthesis , characterization and Structure-activity study. Polym Bull. 2005;113:105–13.
  • 66. Huang J, Cheng Y, Wu Y, Shi X, Du Y, Deng H. Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Int J Biol Macromol [Internet]. 2019;139:191–8. Available from: https://doi.org/10.1016/j.ijbiomac.2019.07.185
  • 67. Fotoran WL, Müntefering T, Kleiber N, Miranda BNM, Liebau E, Irvine DJ, et al. A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomedicine Nanotechnology, Biol Med [Internet]. 2019;22:102099. Available from: https://doi.org/10.1016/j.nano.2019.102099
  • 68. Adewuyi S, Kareem KT, Atayese AO, Amolegbe SA, Akinremi CA. Chitosan-cobalt(II) and nickel(II) chelates as antibacterial agents. Int J Biol Macromol [Internet]. 2011;48(2):301–3. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2010.12.004
  • 69. Loh XJ, Wu YL. Cationic star copolymers based on β-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies. Chem Commun [Internet]. 2015;51(54):10815–8. Available from: http://dx.doi.org/10.1039/C5CC03686K
  • 70. Loh XJ, Ong SJ, Tung YT, Choo HT. Co-delivery of drug and DNA from cationic dual-responsive micelles derived from poly(DMAEMA-co-PPGMA). Mater Sci Eng C [Internet]. 2013;33(8):4545–50. Available from: http://dx.doi.org/10.1016/j.msec.2013.07.011
  • 71. Xiang Y, Nwe N, Oo L, Lee JP, Li Z, Loh XJ. Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today [Internet]. 2017;22(9):1318–35. Available from: http://dx.doi.org/10.1016/j.drudis.2017.04.001
  • 72. Ahsan SM, Thomas M, Reddy KK, Gopal S, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol [Internet]. 2018;110:97–109. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.08.140
  • 73. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev [Internet]. 2010;62(1):12–27. Available from: http://dx.doi.org/10.1016/j.addr.2009.08.004
  • 74. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy : strategies to improve transfection efficacy. Eur J Pharm Biopharm. 2004;57:1–8.
  • 75. Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev [Internet]. 2013;65(9):1234–70. Available from: http://dx.doi.org/10.1016/j.addr.2013.07.005
  • 76. Tripathy S, Das S, Prasad S, Kumar S, Pramanik P, Roy S. Synthesis , characterization of chitosan – tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite : A dose and duration dependent approach. Int J Pharm [Internet]. 2012;434(1–2):292–305. Available from: http://dx.doi.org/10.1016/j.ijpharm.2012.05.064
  • 77. Magalhães GA, Moura E, Sombra VG, Richter AR, Abreu CMWS, Feitosa JPA, et al. Chitosan / Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. Int J Biol Macromol [Internet]. 2016;88:244–53. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2016.03.070
  • 78. Usman M, Akhyar Farrukh M. Formulation of polymeric iron nano-chloroquine phosphate anti-malarial drug via polyol method. Mater Today Proc [Internet]. 2018;5(7):15595–602. Available from: https://doi.org/10.1016/j.matpr.2018.04.168
  • 79. Fantini J, Scala C Di, Chahinian H, Yahi N. Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents [Internet]. 2020;105960. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32251731
  • 80. Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines Against Coronavirus Disease 2019 (COVID-19): Chloroquine or Hydroxychloroquine. Int J Antimicrob Agents [Internet]. 2020;2019(xxxx):105945. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105945
  • 81. Jorge AM, Melles RB, Zhang Y, Lu N, Rai SK, Young LH, et al. Hydroxychloroquine prescription trends and predictors for excess dosing per recent ophthalmology guidelines. Arthritis Res Ther. 2018;20(1):4–11.
  • 82. Lim HS, Im JS, Cho JY, Bae KS, Klein TA, Yeom JS, et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by plasmodium vivax. Antimicrob Agents Chemother. 2009;53(4):1468–75.
  • 83. Ravi PR, Vats R, Balija J, Adapa SPN, Aditya N. Modified pullulan nanoparticles for oral delivery of lopinavir: Formulation and pharmacokinetic evaluation. Carbohydr Polym [Internet]. 2014;110:320–8. Available from: http://dx.doi.org/10.1016/j.carbpol.2014.03.099
  • 84. Kozhikhova K V., Ivantsova MN, Tokareva MI, Shulepov ID, Tretiyakov A V., Shaidarov L V., et al. Preparation of chitosan-coated liposomes as a novel carrier system for the antiviral drug Triazavirin. Pharm Dev Technol [Internet]. 2018;23(4):334–42. Available from: http://dx.doi.org/10.1080/10837450.2016.1242624
  • 85. Cánepa C, Imperiale JC, Berini CA, Lewicki M, Sosnik A, Biglione MM. Development of a Drug Delivery System Based on Chitosan Nanoparticles for Oral Administration of Interferon-α. Biomacromolecules. 2017;18(10):3302–9.
  • 86. Donalisio M, Leone F, Civra A, Spagnolo R, Ozer O, Lembo D, et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics. 2018;10(2):1–12.
  • 87. Ulla F, Javed F, Khan AN, Kudus MHA, Jamila N, Minhaz A, et al. Synthesis and surface modification of chitosan built nanohydrogel with antiviral and antimicrobial agent for controlled drug delivery. Biointerface Res Appl Chem [Internet]. 2019;9(6):4439–45. Available from: https://doi.org/10.33263/BRIAC96.439445
  • 88. Russo E, Gaglianone N, Baldassari S, Parodi B, Cafaggi S, Zibana C, et al. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles. Colloids Surfaces B Biointerfaces [Internet]. 2014;118:117–25. Available from: http://dx.doi.org/10.1016/j.colsurfb.2014.03.037
  • 89. Yang L, Chen L, Zeng R, Li C, Qiao R, Hu L, et al. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: Chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorganic Med Chem [Internet]. 2010;18(1):117–23. Available from: http://dx.doi.org/10.1016/j.bmc.2009.11.013
  • 90. Yan JK, Wang YY, Qiu WY, Wu JY. Construction and characterization of nanosized curdlan sulfate/chitosan polyelectrolyte complex toward drug release of zidovudine. Carbohydr Polym [Internet]. 2017;174:209–16. Available from: http://dx.doi.org/10.1016/j.carbpol.2017.06.082
  • 91. Cazorla-Luna R, Notario-Pérez F, Martín-Illana A, Ruiz-Caro R, Tamayo A, Rubio J, et al. Chitosan-based mucoadhesive vaginal tablets for controlled release of the anti-HIV drug tenofovir. Pharmaceutics. 2019;11(1).
  • 92. Wu D, Ensinas A, Verrier B, Primard C, Cuvillier A, Champier G, et al. Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol Pharm. 2016;13(9):3279–91.
  • 93. Graham BS. Advances in antiviral vaccine development. Immunol Rev. 2013;255(1):230–42.
  • 94. Ellebedy AH, Ahmed R. Antiviral Vaccines: Challenges and Advances. In: The Vaccine Book: Second Edition. Second. Elsevier Inc.; 2016. p. 283–310.
  • 95. Ellebedy AH, Webby RJ. Influenza vaccines. Vaccine. 2009;27(SUPPL. 4):65–8.
  • 96. Muralidharan A, Russell MS, Larocque L, Gravel C, Sauvé S, Chen Z, et al. Chitosan alters inactivated respiratory syncytial virus vaccine elicited immune responses without affecting lung histopathology in mice. Vaccine [Internet]. 2019;37(30):4031–9. Available from: https://doi.org/10.1016/j.vaccine.2019.06.003
  • 97. Spinner JL, Oberoi HS, Yorgensen YM, Poirier DS, Burkhart DJ, Plante M, et al. Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually. Vaccine [Internet]. 2015;33(43):5845–53. Available from: http://dx.doi.org/10.1016/j.vaccine.2015.08.086
  • 98. Renu S, Feliciano-Ruiz N, Ghimire S, Han Y, Schrock J, Dhakal S, et al. Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Vet Microbiol [Internet]. 2020;242(January):108611. Available from: https://doi.org/10.1016/j.vetmic.2020.108611
  • 99. El-Sissi AF, Mohamed FH, Danial NM, Gaballah AQ, Ali KA. Chitosan and chitosan nanoparticles as adjuvant in local Rift Valley Fever inactivated vaccine. 3 Biotech [Internet]. 2020;10(3):1–11. Available from: https://doi.org/10.1007/s13205-020-2076-y
Yıl 2020, Cilt: 7 Sayı: 3, 851 - 864, 30.10.2020
https://doi.org/10.18596/jotcsa.773780

Öz

Proje Numarası

N/A

Kaynakça

  • 1. Fang L, Karakiulakis G, Roth M. Antihypertensive drugs and risk of COVID-19? – Authors’ reply. Lancet Respir Med [Internet]. 2020;2600(20):19–20. Available from: http://dx.doi.org/10.1016/S2213-2600(20)30159-4
  • 2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.
  • 3. Das UN. Can Bioactive Lipids Inactivate Coronavirus (COVID-19)? Arch Med Res [Internet]. 2020; Available from: https://doi.org/10.1016/j.arcmed.2020.03.004
  • 4. Mackenzie JS, Smith DW. COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don’t. Microbiol Aust. 2020;
  • 5. Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun [Internet]. 2020;102434. Available from: https://doi.org/10.1016/j.jaut.2020.102434
  • 6. McCuaig C. What We Know So Far (As of March 26, 2020) About COVID-19 – An MRT Point of View. J Med Imaging Radiat Sci [Internet]. 2020; Available from: http://www.sciencedirect.com/science/article/pii/S1939865420300394
  • 7. Driggin E, Madhavan M V., Bikdeli B, Chuich T, Laracy J, Bondi-Zoccai G, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J Am Coll Cardiol [Internet]. 2020;2019. Available from: https://doi.org/10.1016/j.jacc.2020.03.031
  • 8. Zarracina J, Rodriguez A. A visual guide of coronavirus infection, symptoms of COVID-19 and the effects of the virus inside the body, in graphics. USA TODAY [Internet]. 2020 Mar 17; Available from: https://www.usatoday.com/in-depth/news/2020/03/13/what-coronavirus-does-body-covid-19-infection-process-symptoms/5009057002/
  • 9. Yan Bai, Yao L, Wei T, Tian F, Jin D-Y, Chen L, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. letters. 2020;382(13):1199–207.
  • 10. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect [Internet]. 2020;2(xxxx). Available from: https://doi.org/10.1016/j.jmii.2020.02.012
  • 11. World Health Organization (WHO). What is the WHO position on the use of chloroquine and hydroxylchloroquine in the context of the COVID-19 response? [Internet]. 2020 [cited 2020 Apr 13]. Available from: https://www.who.int/news-room/q-a-detail/malaria-and-the-covid-19-pandemic
  • 12. World Health Organization. 19th WHO Model List of Essential Medicines. Http://WwwWhoInt/Medicines/Publications/Essentialmedicines/En [Internet]. 2015;1–43. Available from: http://www.who.int/medicines/organization/par/edl/expcom13/eml13%7B_%7Den.pdf
  • 13. Kandeel M, Al-Nazawi M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci [Internet]. 2020;251:117627. Available from: https://doi.org/10.1016/j.lfs.2020.117627
  • 14. Smith T, Bushek J, LeClaire A, Prosser T. COVID-19 Drug Therapy. Elsevier - Nov Coronavirus Inf Cent [Internet]. 2020;(CDC):1–21. Available from: https://www.elsevier.com/connect/coronavirus-information-center#research
  • 15. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care [Internet]. 2020;3–7. Available from: https://doi.org/10.1016/j.jcrc.2020.03.005
  • 16. Duan Y, Zhu H-L, Zhou C. Advance of promising targets and agents against 2019-nCoV in China. Drug Discov Today [Internet]. 2020;00(00):10–2. Available from: https://doi.org/10.1016/j.drudis.2020.02.011
  • 17. Choy K-T, Yin-Lam Wong A, Kaewpreedee P, Sia S-F, Chen D, Yan Hui KP, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res [Internet]. 2020;104786. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32251767
  • 18. Smereka J, Szarpak L. COVID 19 a challenge for emergency medicine and every health care professional. Am J Emerg Med. 2020;(xxxx):2–3.
  • 19. Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses : A Review of Virus – Host Interactions. Diseases. 2016;4(26):1–28.
  • 20. Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, et al. Recent Progress in understanding 2019 Novel Coronavirus associated with Human Respiratory Disease: Detection, Mechanism and Treatment. Int J Antimicrob Agents [Internet]. 2020;105950. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105950
  • 21. Wu C-I, Postema PG, Arbelo E, Behr ER, Bezzina CR, Napolitano C, et al. SARS-CoV-2, COVID-19 and inherited arrhythmia syndromes. Hear Rhythm [Internet]. 2020; Available from: http://www.sciencedirect.com/science/article/pii/S154752712030285X
  • 22. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A. 2004;101(12):4240–5.
  • 23. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol [Internet]. 2016;14(8):523–34. Available from: http://dx.doi.org/10.1038/nrmicro.2016.81
  • 24. Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439–50.
  • 25. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal [Internet]. 2020;19(xxxx):1–7. Available from: https://doi.org/10.1016/j.jpha.2020.03.001
  • 26. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;
  • 27. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol. 2003;41(4):1548–57.
  • 28. Lee EYP, Ng MY, Khong PL. COVID-19 pneumonia: what has CT taught us? Lancet Infect Dis. 2020;20(4):384–5.
  • 29. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;1–8.
  • 30. Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model. bioRxiv [Internet]. 2020;18:2020.01.31.929547. Available from: https://www.biorxiv.org/content/biorxiv/early/2020/02/02/2020.01.31.929547.full.pdf
  • 31. Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol. 2019;73(1).
  • 32. Srivastava V, Lee H. Chloroquine-based hybrid molecules as promising novel chemotherapeutic agents. Eur J Pharmacol [Internet]. 2015;762:472–86. Available from: http://dx.doi.org/10.1016/j.ejphar.2015.04.048
  • 33. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents [Internet]. 2020;105938. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105938
  • 34. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin Immunol [Internet]. 2020;214:108393. Available from: https://doi.org/10.1016/j.clim.2020.108393
  • 35. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res [Internet]. 2020;177:104762. Available from: https://doi.org/10.1016/j.antiviral.2020.104762
  • 36. Kashyap A, Kaur R, Baldi A, Kumar U, Chandra R, Madan J. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. Int J Biol Macromol [Internet]. 2018;114:161–8. Available from: https://doi.org/10.1016/j.ijbiomac.2018.03.102
  • 37. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;10:1–10.
  • 38. Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Chan PKS, et al. Evaluation of immunomodulators , interferons and known in vitro SARS-CoV inhibitors for inhibition of SARS-CoV replication in BALB / c mice. Antivir Chem Chemother. 2006;275–84.
  • 39. Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct. 2016;191–6.
  • 40. Lecuit M. Chloroquine and COVID-19, where do we stand? Médecine Mal Infect [Internet]. 2020;3–4. Available from: https://doi.org/10.1016/j.medmal.2020.03.004
  • 41. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents [Internet]. 2020;(xxxx):105932. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105932
  • 42. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr Clin Res Rev [Internet]. 2020;14(3):241–6. Available from: https://doi.org/10.1016/j.dsx.2020.03.011
  • 43. Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus. Int J Antimicrob Agents [Internet]. 2020;105923. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105923
  • 44. Lu H. Drug treatment options for the 2019-new coronavirus (2019- nCoV). Biosci Trends. 2020;P1–3.
  • 45. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Main point : Hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clin Infect Dis. 2020;2:1–25.
  • 46. Picot S, Marty A, Bienvenu A-L, Blumberg LH, Dupouy-Camet J, Carnevale P, et al. Coalition: Advocacy for prospective clinical trials to test the post-exposure potential of hydroxychloroquine against COVID-19. One Heal [Internet]. 2020; Available from: https://doi.org/10.1016/j.onehlt.2020.100131
  • 47. Gabriels J, Saleh M, Chang D, Epstein LM. Inpatient Use of Mobile Continuous Telemetry for COVID-19 Patients Treated with Hydroxychloroquine and Azithromycin. Hear Case Reports [Internet]. 2020;(PG-). Available from: http://www.sciencedirect.com/science/article/pii/S2214027120300580 NS -
  • 48. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents [Internet]. 2020;105949. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105949
  • 49. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.
  • 50. Meynard JL, Moinot L, Landman R, Morand-Joubert L, Besseghir A, Kolta S, et al. Week 96 efficacy of lopinavir/ritonavir monotherapy in virologically suppressed patients with HIV: A randomized non-inferiority trial (ANRS 140 DREAM). J Antimicrob Chemother. 2018;73(6):1672–6.
  • 51. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59(3):252–6.
  • 52. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering [Internet]. 2020;(xxxx):4–10. Available from: https://doi.org/10.1016/j.eng.2020.03.007
  • 53. Lythgoe MP, Middleton P. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol Sci [Internet]. 2020;xx(xx):1–20. Available from: https://doi.org/10.1016/j.tips.2020.03.006
  • 54. Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci [Internet]. 2020;117592. Available from: https://doi.org/10.1016/j.lfs.2020.117592
  • 55. Baron SA, Devaux C, Colson P, Raoult D, Rolain J-M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents [Internet]. 2020;2(xxxx):105944. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105944
  • 56. Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178. 57. Chan JFW, Yao Y, Yeung M-L, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a non-human primate model of common marmoset. J Infecteous Dis. 2015;212(12):1904–13.
  • 58. Brown BL, Mccullough J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus Apher Sci [Internet]. 2020;102790. Available from: https://doi.org/10.1016/j.transci.2020.102790
  • 59. Mohamed T, El-aziz A, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus ( SARS-CoV-2 ) - an update on the status. Infect Genet Evol [Internet]. 2020;83:104327. Available from: https://doi.org/10.1016/j.meegid.2020.104327
  • 60. Tripathy S, Kar S, Chattopadhyay S, Das S. A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop [Internet]. 2013;128(3):494–503. Available from: http://dx.doi.org/10.1016/j.actatropica.2013.07.011
  • 61. Adewuyi S, Sanyaolu NO, Amolegbe SA, Sobola AO, Folarin OM. Poly[β-(1→4)-2-amino-2-deoxy-D-ghicopyranose] based zero valent nickel nanocomposite for efficient reduction of nitrate in water. J Environ Sci (China). 2012;24(9):1702–8.
  • 62. Ahmed F, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Res Vet Sci [Internet]. 2019;126:68–82. Available from: https://doi.org/10.1016/j.rvsc.2019.08.005
  • 63. Chylińska M, Kaczmarek H, Burkowska-But A. Preparation and characteristics of antibacterial chitosan films modified with N-halamine for biomedical application. Colloids Surfaces B Biointerfaces. 2019;176:379–86.
  • 64. Ejeromedoghene, Onome., Alayande, J. Olalekan., Olatunji, D. Emmanuel ., Alli , A. Yakubu., and Adewuyi S. Synthesis of Chitosan-Zirconium(IV) Complexes as an Antifungal Spraying Agent Against Tomato Infected Aspergillus Niger. J Chem Soc Niger [Internet]. 2019;44(1):125–9. Available from: http://journals.chemsociety.org.ng/index.php/jcsn/article/view/253
  • 65. Wang X, Du Y, Fan L, Liu H, Hu Y. Chitosan- metal complexes as antimicrobial agent : Synthesis , characterization and Structure-activity study. Polym Bull. 2005;113:105–13.
  • 66. Huang J, Cheng Y, Wu Y, Shi X, Du Y, Deng H. Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Int J Biol Macromol [Internet]. 2019;139:191–8. Available from: https://doi.org/10.1016/j.ijbiomac.2019.07.185
  • 67. Fotoran WL, Müntefering T, Kleiber N, Miranda BNM, Liebau E, Irvine DJ, et al. A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomedicine Nanotechnology, Biol Med [Internet]. 2019;22:102099. Available from: https://doi.org/10.1016/j.nano.2019.102099
  • 68. Adewuyi S, Kareem KT, Atayese AO, Amolegbe SA, Akinremi CA. Chitosan-cobalt(II) and nickel(II) chelates as antibacterial agents. Int J Biol Macromol [Internet]. 2011;48(2):301–3. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2010.12.004
  • 69. Loh XJ, Wu YL. Cationic star copolymers based on β-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies. Chem Commun [Internet]. 2015;51(54):10815–8. Available from: http://dx.doi.org/10.1039/C5CC03686K
  • 70. Loh XJ, Ong SJ, Tung YT, Choo HT. Co-delivery of drug and DNA from cationic dual-responsive micelles derived from poly(DMAEMA-co-PPGMA). Mater Sci Eng C [Internet]. 2013;33(8):4545–50. Available from: http://dx.doi.org/10.1016/j.msec.2013.07.011
  • 71. Xiang Y, Nwe N, Oo L, Lee JP, Li Z, Loh XJ. Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today [Internet]. 2017;22(9):1318–35. Available from: http://dx.doi.org/10.1016/j.drudis.2017.04.001
  • 72. Ahsan SM, Thomas M, Reddy KK, Gopal S, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol [Internet]. 2018;110:97–109. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.08.140
  • 73. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev [Internet]. 2010;62(1):12–27. Available from: http://dx.doi.org/10.1016/j.addr.2009.08.004
  • 74. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy : strategies to improve transfection efficacy. Eur J Pharm Biopharm. 2004;57:1–8.
  • 75. Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev [Internet]. 2013;65(9):1234–70. Available from: http://dx.doi.org/10.1016/j.addr.2013.07.005
  • 76. Tripathy S, Das S, Prasad S, Kumar S, Pramanik P, Roy S. Synthesis , characterization of chitosan – tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite : A dose and duration dependent approach. Int J Pharm [Internet]. 2012;434(1–2):292–305. Available from: http://dx.doi.org/10.1016/j.ijpharm.2012.05.064
  • 77. Magalhães GA, Moura E, Sombra VG, Richter AR, Abreu CMWS, Feitosa JPA, et al. Chitosan / Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. Int J Biol Macromol [Internet]. 2016;88:244–53. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2016.03.070
  • 78. Usman M, Akhyar Farrukh M. Formulation of polymeric iron nano-chloroquine phosphate anti-malarial drug via polyol method. Mater Today Proc [Internet]. 2018;5(7):15595–602. Available from: https://doi.org/10.1016/j.matpr.2018.04.168
  • 79. Fantini J, Scala C Di, Chahinian H, Yahi N. Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents [Internet]. 2020;105960. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32251731
  • 80. Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines Against Coronavirus Disease 2019 (COVID-19): Chloroquine or Hydroxychloroquine. Int J Antimicrob Agents [Internet]. 2020;2019(xxxx):105945. Available from: https://doi.org/10.1016/j.ijantimicag.2020.105945
  • 81. Jorge AM, Melles RB, Zhang Y, Lu N, Rai SK, Young LH, et al. Hydroxychloroquine prescription trends and predictors for excess dosing per recent ophthalmology guidelines. Arthritis Res Ther. 2018;20(1):4–11.
  • 82. Lim HS, Im JS, Cho JY, Bae KS, Klein TA, Yeom JS, et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by plasmodium vivax. Antimicrob Agents Chemother. 2009;53(4):1468–75.
  • 83. Ravi PR, Vats R, Balija J, Adapa SPN, Aditya N. Modified pullulan nanoparticles for oral delivery of lopinavir: Formulation and pharmacokinetic evaluation. Carbohydr Polym [Internet]. 2014;110:320–8. Available from: http://dx.doi.org/10.1016/j.carbpol.2014.03.099
  • 84. Kozhikhova K V., Ivantsova MN, Tokareva MI, Shulepov ID, Tretiyakov A V., Shaidarov L V., et al. Preparation of chitosan-coated liposomes as a novel carrier system for the antiviral drug Triazavirin. Pharm Dev Technol [Internet]. 2018;23(4):334–42. Available from: http://dx.doi.org/10.1080/10837450.2016.1242624
  • 85. Cánepa C, Imperiale JC, Berini CA, Lewicki M, Sosnik A, Biglione MM. Development of a Drug Delivery System Based on Chitosan Nanoparticles for Oral Administration of Interferon-α. Biomacromolecules. 2017;18(10):3302–9.
  • 86. Donalisio M, Leone F, Civra A, Spagnolo R, Ozer O, Lembo D, et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics. 2018;10(2):1–12.
  • 87. Ulla F, Javed F, Khan AN, Kudus MHA, Jamila N, Minhaz A, et al. Synthesis and surface modification of chitosan built nanohydrogel with antiviral and antimicrobial agent for controlled drug delivery. Biointerface Res Appl Chem [Internet]. 2019;9(6):4439–45. Available from: https://doi.org/10.33263/BRIAC96.439445
  • 88. Russo E, Gaglianone N, Baldassari S, Parodi B, Cafaggi S, Zibana C, et al. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles. Colloids Surfaces B Biointerfaces [Internet]. 2014;118:117–25. Available from: http://dx.doi.org/10.1016/j.colsurfb.2014.03.037
  • 89. Yang L, Chen L, Zeng R, Li C, Qiao R, Hu L, et al. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: Chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorganic Med Chem [Internet]. 2010;18(1):117–23. Available from: http://dx.doi.org/10.1016/j.bmc.2009.11.013
  • 90. Yan JK, Wang YY, Qiu WY, Wu JY. Construction and characterization of nanosized curdlan sulfate/chitosan polyelectrolyte complex toward drug release of zidovudine. Carbohydr Polym [Internet]. 2017;174:209–16. Available from: http://dx.doi.org/10.1016/j.carbpol.2017.06.082
  • 91. Cazorla-Luna R, Notario-Pérez F, Martín-Illana A, Ruiz-Caro R, Tamayo A, Rubio J, et al. Chitosan-based mucoadhesive vaginal tablets for controlled release of the anti-HIV drug tenofovir. Pharmaceutics. 2019;11(1).
  • 92. Wu D, Ensinas A, Verrier B, Primard C, Cuvillier A, Champier G, et al. Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol Pharm. 2016;13(9):3279–91.
  • 93. Graham BS. Advances in antiviral vaccine development. Immunol Rev. 2013;255(1):230–42.
  • 94. Ellebedy AH, Ahmed R. Antiviral Vaccines: Challenges and Advances. In: The Vaccine Book: Second Edition. Second. Elsevier Inc.; 2016. p. 283–310.
  • 95. Ellebedy AH, Webby RJ. Influenza vaccines. Vaccine. 2009;27(SUPPL. 4):65–8.
  • 96. Muralidharan A, Russell MS, Larocque L, Gravel C, Sauvé S, Chen Z, et al. Chitosan alters inactivated respiratory syncytial virus vaccine elicited immune responses without affecting lung histopathology in mice. Vaccine [Internet]. 2019;37(30):4031–9. Available from: https://doi.org/10.1016/j.vaccine.2019.06.003
  • 97. Spinner JL, Oberoi HS, Yorgensen YM, Poirier DS, Burkhart DJ, Plante M, et al. Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually. Vaccine [Internet]. 2015;33(43):5845–53. Available from: http://dx.doi.org/10.1016/j.vaccine.2015.08.086
  • 98. Renu S, Feliciano-Ruiz N, Ghimire S, Han Y, Schrock J, Dhakal S, et al. Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Vet Microbiol [Internet]. 2020;242(January):108611. Available from: https://doi.org/10.1016/j.vetmic.2020.108611
  • 99. El-Sissi AF, Mohamed FH, Danial NM, Gaballah AQ, Ali KA. Chitosan and chitosan nanoparticles as adjuvant in local Rift Valley Fever inactivated vaccine. 3 Biotech [Internet]. 2020;10(3):1–11. Available from: https://doi.org/10.1007/s13205-020-2076-y
Toplam 98 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Onome Ejeromedoghene 0000-0002-5487-3267

Olayinka Oderinde Bu kişi benim 0000-0002-2050-0948

George Egejuru Bu kişi benim 0000-0002-6306-0743

Sheriff Adewuyi Bu kişi benim 0000-0003-2227-0936

Proje Numarası N/A
Yayımlanma Tarihi 30 Ekim 2020
Gönderilme Tarihi 25 Temmuz 2020
Kabul Tarihi 4 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 3

Kaynak Göster

Vancouver Ejeromedoghene O, Oderinde O, Egejuru G, Adewuyi S. Chitosan-drug encapsulation as a potential candidate for COVID-19 drug delivery systems: A review. JOTCSA. 2020;7(3):851-64.