Research Article
BibTex RIS Cite

Antimicrobial Activity Evaluation of Newly Synthesized N,N-Disubstituted Taurinamidobenzenesulfonamide Derivatives

Year 2021, Volume: 8 Issue: 1, 321 - 328, 28.02.2021
https://doi.org/10.18596/jotcsa.834579

Abstract

Herein we synthesized 6 new N,N-disubstituted taurinamidobenzensulfonamide derivatives and characterized their structures by means of 1H and 13C NMR, HR-MS analysis. In addition, their in vitro antibacterial and antifungal activities were tested against two gram-positive, two gram-negative bacteria, and two fungal strains by using broth microdilution method. Compounds 1 (methoxy substitution) and 2 (methyl substitution) displayed the best antibacterial activity against Escherichia coli and Staphylococcus aureus, respectively. E. faecalis was affected by compounds 1, 2, 4, and 6, becoming the most susceptible pathogen compared to other tested bacterial and fungal strains. Interestingly, changing fluoro atom in compound 6 with the chloro atom, as in compound 5, deteriorated the antibacterial activity against all bacterial strains. As a result, these results provide us to investigate the relationship between structural changes and antibacterial/antifungal activity, which can be further used to develop more effective taurine derivatives.

Supporting Institution

The Scientific and Technological Research Council of Turkey [TUBITAK; Project number: SBAG- 117S516] and Ege University Scientific Research Projects Coordination Unit [Project number: 16-ECZ-012].

Project Number

SBAG- 117S516, 16-ECZ-012.

References

  • 1. Sui Y-F, Li D, Wang J, Bheemanaboina RRY, Ansari MF, Gan L-L, et al. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg Med Chem Lett. 2020 Mar;30(6):126982. Doi: 10.1016/j.bmcl.2020.126982.
  • 2. Naaz F, Srivastava R, Singh A, Singh N, Verma R, Singh VK, et al. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg Med Chem. 2018 Jul;26(12):3414–28. Doi: 10.1016/j.bmc.2018.05.015.
  • 3. Ali M, Angeli A, Bozdag M, Carta F, Capasso C, Farooq U, et al. Benzylaminoethylureido‐Tailed Benzenesulfonamides Show Potent Inhibitory Activity against Bacterial Carbonic Anhydrases. ChemMedChem. 2020 Oct 28;cmdc.202000680. Doi: 10.1002/cmdc.202000680.
  • 4. Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat. 2020 Sep 3;0(0):1–20. Doi: 10.1080/13543776.2020.1811853.
  • 5. Supuran CT, Capasso C. Carbonic anhydrases from pathogens. In: Carbonic Anhydrases. Elsevier; 2019. p. 387–417. Doi: 10.1016/B978-0-12-816476-1.00020-4.
  • 6. Küçükbay H, Buğday N, Küçükbay FZ, Berrino E, Bartolucci G, Del Prete S, et al. Synthesis and carbonic anhydrase inhibitory properties of novel 4-(2-aminoethyl)benzenesulfonamide-dipeptide conjugates. Bioorg Chem. 2019;83(September 2018):414–23. Doi: 10.1016/j.bioorg.2018.11.003.
  • 7. Ibrahim MA, Panda SS, Birs AS, Serrano JC, Gonzalez CF, Alamry KA, et al. Synthesis and antibacterial evaluation of amino acid-antibiotic conjugates. 2014; Doi: 10.1016/j.bmcl.2014.01.065.
  • 8. Grygorenko OO, Biitseva A V., Zhersh S. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron. 2018 Mar;74(13):1355–421.
  • 9. Chung M, Malatesta P, Bosquesi P, Yamasaki P, Santos JL dos, Vizioli E. Advances in Drug Design Based on the Amino Acid Approach: Taurine Analogues for the Treatment of CNS Diseases. Pharmaceuticals. 2012 Oct 23;5(10):1128–46.
  • 10. Gupta RC. Taurine Analogues and Taurine Transport: Therapeutic Advantages. In: S.S. O, P. S, editors. Taurine 6. New York: Springer US; 2006. p. 449–67. 11. Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis. 2012;18(November):2673–86.
  • 12. Cook AM, Denger K. Metabolism of taurine in microorganisms: A primer in molecular biodiversity? In: Advances in Experimental Medicine and Biology. Springer New York; 2006 [cited 2020 Nov 22]. p. 3–13.
  • 13. Tomoshige S, Dik DA, Akabane-Nakata M, Madukoma CS, Fisher JF, Shrout JD, et al. Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the β-Lactam Antibiotics. ACS Infect Dis. 2018 Jun 8;4(6):860–7.
  • 14. Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, et al. Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res. 2009 Jul;1279:131–8.
  • 15. Vanitha MK, Baskaran K, Periyasamy K, Saravanan D, Ilakkia A, Selvaraj S, et al. A Review on the Biomedical Importance of Taurine. Int J Pharma Res Heal Sci. 2015 [cited 2016 Apr 15];3(3):680–6.
  • 16. Gottardi W, Debabov D, Nagl M. N-Chloramines, a Promising Class of Well-Tolerated Topical Anti-Infectives. Antimicrob Agents Chemother. 2013;57(3):1107–14.
  • 17. Jekle A, Yoon J, Zuck M, Najafi R, Wang L, Shiau T, et al. NVC-422 Inactivates Staphylococcus aureus Toxins. Antimicrob Agents Chemother. 2013;57(2):924–9.
  • 18. Darouiche D, Najafi R, Krantz K, Debabov D, Friedman L, Khosrovi B, et al. NVC-422. Drugs Future. 2011;36(9):651.
  • 19. Akgül Ö, Öztürk İ, Aygül A, Ermertcan Ş. Synthesis and Antimicrobial Activity of Some Taurinamide Derivatives. Marmara Pharm J. 2017; 21(2):361–361.
  • 20. Akgül Ö, Angeli A, Vullo D, Carta F, Supuran CT. Unconventional amino acids in medicinal chemistry: First report on taurine merged within carbonic anhydrase inhibitors. Bioorg Chem. 2020 Oct 1;103:104236.
  • 21. Salvatore RN, Yoon CH, Jung KW. Synthesis of secondary amines. Tetrahedron. 2001 Sep [cited 2016 Jul 28];57(37):7785–811.
  • 22. Salvatore RN, Nagle AS, Schmidt SE, Jung KW. Cesium Hydroxide Promoted Chemoselective N -Alkylation for the Generally Efficient Synthesis of Secondary Amines. Org Lett. 1999 Dec;1(12):1893–6. Doi: 10.1021/ol9910417.
  • 23. European Committee on Antimicrobial Susceptibility Testing. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST. Eucast. 2020;Version 10:1–20.
Year 2021, Volume: 8 Issue: 1, 321 - 328, 28.02.2021
https://doi.org/10.18596/jotcsa.834579

Abstract

Project Number

SBAG- 117S516, 16-ECZ-012.

References

  • 1. Sui Y-F, Li D, Wang J, Bheemanaboina RRY, Ansari MF, Gan L-L, et al. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg Med Chem Lett. 2020 Mar;30(6):126982. Doi: 10.1016/j.bmcl.2020.126982.
  • 2. Naaz F, Srivastava R, Singh A, Singh N, Verma R, Singh VK, et al. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg Med Chem. 2018 Jul;26(12):3414–28. Doi: 10.1016/j.bmc.2018.05.015.
  • 3. Ali M, Angeli A, Bozdag M, Carta F, Capasso C, Farooq U, et al. Benzylaminoethylureido‐Tailed Benzenesulfonamides Show Potent Inhibitory Activity against Bacterial Carbonic Anhydrases. ChemMedChem. 2020 Oct 28;cmdc.202000680. Doi: 10.1002/cmdc.202000680.
  • 4. Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat. 2020 Sep 3;0(0):1–20. Doi: 10.1080/13543776.2020.1811853.
  • 5. Supuran CT, Capasso C. Carbonic anhydrases from pathogens. In: Carbonic Anhydrases. Elsevier; 2019. p. 387–417. Doi: 10.1016/B978-0-12-816476-1.00020-4.
  • 6. Küçükbay H, Buğday N, Küçükbay FZ, Berrino E, Bartolucci G, Del Prete S, et al. Synthesis and carbonic anhydrase inhibitory properties of novel 4-(2-aminoethyl)benzenesulfonamide-dipeptide conjugates. Bioorg Chem. 2019;83(September 2018):414–23. Doi: 10.1016/j.bioorg.2018.11.003.
  • 7. Ibrahim MA, Panda SS, Birs AS, Serrano JC, Gonzalez CF, Alamry KA, et al. Synthesis and antibacterial evaluation of amino acid-antibiotic conjugates. 2014; Doi: 10.1016/j.bmcl.2014.01.065.
  • 8. Grygorenko OO, Biitseva A V., Zhersh S. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron. 2018 Mar;74(13):1355–421.
  • 9. Chung M, Malatesta P, Bosquesi P, Yamasaki P, Santos JL dos, Vizioli E. Advances in Drug Design Based on the Amino Acid Approach: Taurine Analogues for the Treatment of CNS Diseases. Pharmaceuticals. 2012 Oct 23;5(10):1128–46.
  • 10. Gupta RC. Taurine Analogues and Taurine Transport: Therapeutic Advantages. In: S.S. O, P. S, editors. Taurine 6. New York: Springer US; 2006. p. 449–67. 11. Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis. 2012;18(November):2673–86.
  • 12. Cook AM, Denger K. Metabolism of taurine in microorganisms: A primer in molecular biodiversity? In: Advances in Experimental Medicine and Biology. Springer New York; 2006 [cited 2020 Nov 22]. p. 3–13.
  • 13. Tomoshige S, Dik DA, Akabane-Nakata M, Madukoma CS, Fisher JF, Shrout JD, et al. Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the β-Lactam Antibiotics. ACS Infect Dis. 2018 Jun 8;4(6):860–7.
  • 14. Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, et al. Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res. 2009 Jul;1279:131–8.
  • 15. Vanitha MK, Baskaran K, Periyasamy K, Saravanan D, Ilakkia A, Selvaraj S, et al. A Review on the Biomedical Importance of Taurine. Int J Pharma Res Heal Sci. 2015 [cited 2016 Apr 15];3(3):680–6.
  • 16. Gottardi W, Debabov D, Nagl M. N-Chloramines, a Promising Class of Well-Tolerated Topical Anti-Infectives. Antimicrob Agents Chemother. 2013;57(3):1107–14.
  • 17. Jekle A, Yoon J, Zuck M, Najafi R, Wang L, Shiau T, et al. NVC-422 Inactivates Staphylococcus aureus Toxins. Antimicrob Agents Chemother. 2013;57(2):924–9.
  • 18. Darouiche D, Najafi R, Krantz K, Debabov D, Friedman L, Khosrovi B, et al. NVC-422. Drugs Future. 2011;36(9):651.
  • 19. Akgül Ö, Öztürk İ, Aygül A, Ermertcan Ş. Synthesis and Antimicrobial Activity of Some Taurinamide Derivatives. Marmara Pharm J. 2017; 21(2):361–361.
  • 20. Akgül Ö, Angeli A, Vullo D, Carta F, Supuran CT. Unconventional amino acids in medicinal chemistry: First report on taurine merged within carbonic anhydrase inhibitors. Bioorg Chem. 2020 Oct 1;103:104236.
  • 21. Salvatore RN, Yoon CH, Jung KW. Synthesis of secondary amines. Tetrahedron. 2001 Sep [cited 2016 Jul 28];57(37):7785–811.
  • 22. Salvatore RN, Nagle AS, Schmidt SE, Jung KW. Cesium Hydroxide Promoted Chemoselective N -Alkylation for the Generally Efficient Synthesis of Secondary Amines. Org Lett. 1999 Dec;1(12):1893–6. Doi: 10.1021/ol9910417.
  • 23. European Committee on Antimicrobial Susceptibility Testing. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST. Eucast. 2020;Version 10:1–20.
There are 22 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Organic Chemistry
Journal Section Articles
Authors

Özlem Akgül 0000-0002-0011-7888

Ayşegül Ateş 0000-0001-6891-6662

Şafak Ermertcan This is me 0000-0001-6686-6892

Project Number SBAG- 117S516, 16-ECZ-012.
Publication Date February 28, 2021
Submission Date December 1, 2020
Acceptance Date January 12, 2021
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

Vancouver Akgül Ö, Ateş A, Ermertcan Ş. Antimicrobial Activity Evaluation of Newly Synthesized N,N-Disubstituted Taurinamidobenzenesulfonamide Derivatives. JOTCSA. 2021;8(1):321-8.