Araştırma Makalesi
BibTex RIS Kaynak Göster

Isotherm and thermodynamic studies on the removal of gelatin-stabilized silver nanoparticles from water by activated carbon

Yıl 2022, Cilt: 9 Sayı: 3, 919 - 938, 31.08.2022
https://doi.org/10.18596/jotcsa.1098891

Öz

Gelatin-stabilized silver nanoparticles (AgNPs) with a particle size of 6.9 (±3.2) nm were synthesized and employed in nanoparticle adsorption onto activated carbon (AC). Subsequently, the synthesized AgNPs and the adsorbed nanoparticles onto the AC (AgNP@AC) were characterized by various techniques including UV–Vis spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT–IR) and X–ray diffraction (XRD). AgNPs possessed colloidal stability at a wide pH interval ranging between 4 and 13. Adsorption was studied batch-wise as a function of initial nanoparticle concentration (4–14 mg L-1), temperature (298–323 K), pH (4–13) and adsorbent dosage (0.01–0.05 g). Adsorption isotherms were investigated by fitting the data to different isotherm models including Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R). Error analysis indicated that the adsorption is well described by the Langmuir model with a monolayer adsorption capacity of 10.36 mg g-1 for 0.05 g AC at pH 7 and 323 K. Thermodynamic parameters such as enthalpy (66.77 kJ mol-1), entropy (232.92 J mol-1 K-1), and Gibbs free energy (–8.31 kJ mol-1) indicated that the process is endothermic, favorable and spontaneous through physical interactions.

Destekleyen Kurum

Karabük Üniversitesi

Proje Numarası

Project 16/1-DS-245

Teşekkür

The authors gratefully thank Karabük University for the support by a grant from the [Project 16/1-DS-245].

Kaynakça

  • 1. García-Barrasa J, López-De-luzuriaga JM, Monge M. Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem. 2011;9(1):7–19.
  • 2. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Baudrit JRV. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front Chem. 2017;5(Feb):1–26.
  • 3. Sivera M, Kvitek L, Soukupova J, Panacek A, Prucek R, Vecerova R, et al. Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity. PLoS One. 2014;9(8).
  • 4. Seoudi R, Shabaka A, El Sayed ZA, Anis B. Effect of stabilizing agent on the morphology and optical properties of silver nanoparticles. Phys E Low-Dimensional Syst Nanostructures. 2011;44(2):440–7.
  • 5. Alarcon EI, Bueno-Alejo CJ, Noel CW, Stamplecoskie KG, Pacioni NL, Poblete H, et al. Human serum albumin as protecting agent of silver nanoparticles: Role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanoparticle Res. 2013;15(1).
  • 6. Salgueiriño-Maceira V, Correa-Duarte MA, Farle M, López-Quintela MA, Sieradzki K, Diaz R. Synthesis and characterization of large colloidal cobalt particles. Langmuir. 2006;22(4):1455–8.
  • 7. Campos AM, Raymundo-Pereira PA, Cincotto FH, Canevari TC, Machado SAS. Sensitive determination of the endocrine disruptor bisphenol A at ultrathin film based on nanostructured hybrid material SiO2/GO/AgNP. J Solid State Electrochem. 2016;20(9):2503–7.
  • 8. Mdluli PS, Revaprasadu N. An improved N,N-dimethylformamide and polyvinyl pyrrolidone approach for the synthesis of long silver nanowires. J Alloys Compd. 2009;469(1–2):519–22.
  • 9. Kashiwagi Y, Yamamoto M, Nakamoto M. Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J Colloid Interface Sci. 2006;300(1):169–75.
  • 10. Brust M, Kiely CJ. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloids Surfaces A Physicochem Eng Asp. 2002;202(2–3):175–86.
  • 11. Bunge SD, Boyle TJ, Headley TJ. Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett. 2003;3(7):901–5.
  • 12. Pastoriza-Santos I, Liz-Marzán LM. Formation of PVP-protected metal nanoparticles in DMF. Langmuir. 2002;18(7):2888–94.
  • 13. Ahmad M Bin, Lim JJ, Shameli K, Ibrahim NA, Tay MY. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules. 2011;16(9):7237–48.
  • 14. Jia Z, Sun H, Gu Q. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids Surfaces A Physicochem Eng Asp. 2013;419:174–9.
  • 15. Xiong Y, Luo G, Chen C, Yuan H, Shen Q, Li M. In situ synthesis of zero-valent silver nanoparticles in polymethylmethacrylate under high temperature. Appl Surf Sci. 2012;258(15):5822–6.
  • 16. Sun X, Dong S, Wang E. One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules. 2004;37(19):7105–8.
  • 17. Long Y, Ran X, Zhang L, Guo Q, Yang T, Gao J, et al. A method for the preparation of silver nanoparticles using commercially available carboxymethyl chitosan and sunlight. Mater Lett. 2013;112:101–4.
  • 18. Moussa SH, Tayel AA, Alsohim AS, Abdallah RR. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci. 2013;78(10):1589–94.
  • 19. Oluwafemi OS, Lucwaba Y, Gura A, Masabeya M, Ncapayi V, Olujimi OO, et al. A facile completely “green” size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator. Colloids Surfaces B Biointerfaces. 2013;102:718–23.
  • 20. Lee C, Zhang P. Facile synthesis of gelatin-protected silver nanoparticles for SERS applications. J Raman Spectrosc. 2013;44(6):823–6.
  • 21. Darroudi M, Khorsand Zak A, Muhamad MR, Huang NM, Hakimi M. Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater Lett. 2012;66(1):117–20.
  • 22. Zamiri R, Azmi BZ, Ahangar HA, Zamiri G, Husin MS, Wahab ZA. Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull Mater Sci. 2012;35(5):727–31.
  • 23. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–946.
  • 24. Evanoff DD, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem. 2005;6(7):1221–31.
  • 25. Valdés H, Sánchez-Polo M, Rivera-Utrilla J, Zaror CA. Effect of ozone treatment on surface properties of activated carbon. Langmuir. 2002;18(6):2111–6.
  • 26. Fabris D, Garg V, Sapag K, Oliveira LCA, Rios RVRA, Lago RM. Activated carbon / iron oxide magnetic composites for the adsorption of contaminants in water. 2002;40:2177–83.
  • 27. Eltugral N, Simsir H, Karagoz S. Preparation of nano-silver-supported activated carbon using different ligands. Res Chem Intermed. 2016;42(3):1663–76.
  • 28. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–53.
  • 29. Boehm HP. Chemical Identification of Surface Groups. Adv Catal. 1966;16(C):179–274.
  • 30 Teng H, Xu S, Zhao C, Lv F, Liu H. Removal of Hexavalent Chromium from Aqueous Solutions by Sodium Dodecyl Sulfate Stabilized Nano Zero-Valent Iron: A Kinetics, Equilibrium, Thermodynamics Study. Sep Sci Technol. 2013;48(11):1729–37.
  • 31. Maity D, Kanti Bain M, Bhowmick B, Sarkar J, Saha S, Acharya K, et al. In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer. J Appl Polym Sci. 2011;122(4)2189-96.
  • 32. Srinivasan NR, Shankar PA, Bandyopadhyaya R. Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection. Carbon N Y. 2013;57(22):1–10.
  • 33. Peña-González CE, Pedziwiatr-Werbicka E, Shcharbin D, Guerrero-Beltrán C, Abashkin V, Loznikova S, et al. Gold nanoparticles stabilized by cationic carbosilane dendrons: Synthesis and biological properties. Dalt Trans. 2017;46(27):8736–45.
  • 34. El-Shishtawy RM, Asiri AM, Al-Otaibi MM. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2011;79(5):1505–10.
  • 35. Ho CM, Yau SKW, Lok CN, So MH, Che CM. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: A kinetic and mechanistic study. Chem - An Asian J. 2010;5(2):285–93.
  • 36. Dickinson E, Lopez G. Comparison of the emulsifying properties of fish gelatin and commercial milk proteins. J Food Sci. 2001;66(1):118–23.
  • 37. Hashim DM, Man YBC, Norakasha R, Shuhaimi M, Salmah Y, Syahariza ZA. Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 2010;118(3):856–60.
  • 38. Solanki PR. Gelatin Nanoparticles as a Delivery System for Proteins. J Nanomedicine Res. 2015;2(1):2–4.
  • 39. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31(6):865–73.
  • 40. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;8:4467-79.
  • 41. Pandey S, Goswami GK, Nanda KK. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol. 2012;51(4):583–9.
  • 42. Wang X, Chen Y. A new two-phase system for the preparation of nearly monodisperse silver nanoparticles. Mater Lett. 2008; 62(28):4366-68.
  • 43. Das D, Samal DP, BC M. Preparation of Activated Carbon from Green Coconut Shell and its Characterization. J Chem Eng Process Technol. 2015;06(05).
  • 44. Tuan TQ, Son N Van, Dung HTK, Luong NH, Thuy BT, Anh NT Van, et al. Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J Hazard Mater. 2011;192(3):1321–9.
  • 45. Karthik C, Radha K V. Silver nanoparticle loaded activated carbon: An escalated nanocomposite with antimicrobial property. Orient J Chem. 2016;32(1):735–41.
  • 46. Chun Y, Sheng G, Chiou GT, Xing B. Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol. 2004;38(17):4649–55.
  • 47. Ridder DJ de. Adsorption of organic micropollutants onto activated carbon and zeolites. Vol. P.hD, Water management academic press. 2012.
  • 48. Senthilkumaar S, Varadarajan PR, Porkodi K, Subbhuraam C V. Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. J Colloid Interface Sci. 2005;284(1):78–82.
  • 49. Zhu HY, Fu YQ, Jiang R, Jiang JH, Xiao L, Zeng GM, et al. Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chem Eng J. 2011;173(2):494–502.
  • 50. Ghaedi M, Sadeghian B, Pebdani AA, Sahraei R, Daneshfar A, Duran C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J. 2012;187:133–41.
  • 51. Garg VKKR, Gupta R. Dyes Pigments. Remov malachite green Dye from aqueous Solut by Adsorpt using agro-industry waste a case study Prosopis cineraria. 2004;62:1–10.
  • 52. Honeyman BD, Santschi PH. Metals in aquatic systems. Environ Sci Technol. 1988;22(8):862–71.
  • 53. Manohar DM, Anoop Krishnan K, Anirudhan TS. Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res. 2002;36(6):1609–19.
  • 54. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye Pigment. 2008;77(1):16–23.
  • 55. Norde W, Lyklema J. Thermodynamics of protein adsorption. Theory with special reference to the adsorption of human plasma albumin and bovine pancreas ribonuclease at polystyrene surfaces. J Colloid Interface Sci. 1979;71(2):350–66.
  • 56. Bhatnagar A, Sillanpää M. Removal of natural organic matter (NOM) and its constituents from water by adsorption – A review. Chemosphere. 2017;166:497–510.
  • 57. Jalil AA, Triwahyono S, Adam SH, Rahim ND, Aziz MAA, Hairom NHH, et al. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J Hazard Mater. 2010;181(1–3):755–62.
  • 58. Ng C, Losso JN, Marshall WE, Rao RM. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system. Bioresour Technol. 2002;85(2):131–5.
  • 59. Da A. Adsorption-- from theory to practice. 2001; 93(1-3):135-224.
  • 60. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(1):2–10.
  • 61. Sogut E, Caliskan N. isotherm and kinetic studies of Pb (ii) adsorption on raw and modified diatomite by using non-linear regression method. Fresenius Environ Bull. 2017;26(4):2720–8.
  • 62. Günay A, Arslankaya E, Tosun I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater. 2007;146(1–2):362–71.
  • 63. Özer A, Özer D, Özer A. The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): Determination of the equilibrium and thermodynamic parameters. Process Biochem. 2004;39(12):2183–91.
  • 64. Nekouei F, Nekouei S, Tyagi I, Gupta VK. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J Mol Liq. 2015;201:124–33.
  • 65. Kilislioglu A, Bilgin B. Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl Radiat Isot. 2003;58(2):155-60.
  • 66. Weil KG. M. J. Jaycock, G. D. Parfitt: Chemistry of Interfaces. Ellis Horwood Limited Publishers, Chichester 1981.
Yıl 2022, Cilt: 9 Sayı: 3, 919 - 938, 31.08.2022
https://doi.org/10.18596/jotcsa.1098891

Öz

Proje Numarası

Project 16/1-DS-245

Kaynakça

  • 1. García-Barrasa J, López-De-luzuriaga JM, Monge M. Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem. 2011;9(1):7–19.
  • 2. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Baudrit JRV. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front Chem. 2017;5(Feb):1–26.
  • 3. Sivera M, Kvitek L, Soukupova J, Panacek A, Prucek R, Vecerova R, et al. Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity. PLoS One. 2014;9(8).
  • 4. Seoudi R, Shabaka A, El Sayed ZA, Anis B. Effect of stabilizing agent on the morphology and optical properties of silver nanoparticles. Phys E Low-Dimensional Syst Nanostructures. 2011;44(2):440–7.
  • 5. Alarcon EI, Bueno-Alejo CJ, Noel CW, Stamplecoskie KG, Pacioni NL, Poblete H, et al. Human serum albumin as protecting agent of silver nanoparticles: Role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanoparticle Res. 2013;15(1).
  • 6. Salgueiriño-Maceira V, Correa-Duarte MA, Farle M, López-Quintela MA, Sieradzki K, Diaz R. Synthesis and characterization of large colloidal cobalt particles. Langmuir. 2006;22(4):1455–8.
  • 7. Campos AM, Raymundo-Pereira PA, Cincotto FH, Canevari TC, Machado SAS. Sensitive determination of the endocrine disruptor bisphenol A at ultrathin film based on nanostructured hybrid material SiO2/GO/AgNP. J Solid State Electrochem. 2016;20(9):2503–7.
  • 8. Mdluli PS, Revaprasadu N. An improved N,N-dimethylformamide and polyvinyl pyrrolidone approach for the synthesis of long silver nanowires. J Alloys Compd. 2009;469(1–2):519–22.
  • 9. Kashiwagi Y, Yamamoto M, Nakamoto M. Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J Colloid Interface Sci. 2006;300(1):169–75.
  • 10. Brust M, Kiely CJ. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloids Surfaces A Physicochem Eng Asp. 2002;202(2–3):175–86.
  • 11. Bunge SD, Boyle TJ, Headley TJ. Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett. 2003;3(7):901–5.
  • 12. Pastoriza-Santos I, Liz-Marzán LM. Formation of PVP-protected metal nanoparticles in DMF. Langmuir. 2002;18(7):2888–94.
  • 13. Ahmad M Bin, Lim JJ, Shameli K, Ibrahim NA, Tay MY. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules. 2011;16(9):7237–48.
  • 14. Jia Z, Sun H, Gu Q. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids Surfaces A Physicochem Eng Asp. 2013;419:174–9.
  • 15. Xiong Y, Luo G, Chen C, Yuan H, Shen Q, Li M. In situ synthesis of zero-valent silver nanoparticles in polymethylmethacrylate under high temperature. Appl Surf Sci. 2012;258(15):5822–6.
  • 16. Sun X, Dong S, Wang E. One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules. 2004;37(19):7105–8.
  • 17. Long Y, Ran X, Zhang L, Guo Q, Yang T, Gao J, et al. A method for the preparation of silver nanoparticles using commercially available carboxymethyl chitosan and sunlight. Mater Lett. 2013;112:101–4.
  • 18. Moussa SH, Tayel AA, Alsohim AS, Abdallah RR. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci. 2013;78(10):1589–94.
  • 19. Oluwafemi OS, Lucwaba Y, Gura A, Masabeya M, Ncapayi V, Olujimi OO, et al. A facile completely “green” size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator. Colloids Surfaces B Biointerfaces. 2013;102:718–23.
  • 20. Lee C, Zhang P. Facile synthesis of gelatin-protected silver nanoparticles for SERS applications. J Raman Spectrosc. 2013;44(6):823–6.
  • 21. Darroudi M, Khorsand Zak A, Muhamad MR, Huang NM, Hakimi M. Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater Lett. 2012;66(1):117–20.
  • 22. Zamiri R, Azmi BZ, Ahangar HA, Zamiri G, Husin MS, Wahab ZA. Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull Mater Sci. 2012;35(5):727–31.
  • 23. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–946.
  • 24. Evanoff DD, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem. 2005;6(7):1221–31.
  • 25. Valdés H, Sánchez-Polo M, Rivera-Utrilla J, Zaror CA. Effect of ozone treatment on surface properties of activated carbon. Langmuir. 2002;18(6):2111–6.
  • 26. Fabris D, Garg V, Sapag K, Oliveira LCA, Rios RVRA, Lago RM. Activated carbon / iron oxide magnetic composites for the adsorption of contaminants in water. 2002;40:2177–83.
  • 27. Eltugral N, Simsir H, Karagoz S. Preparation of nano-silver-supported activated carbon using different ligands. Res Chem Intermed. 2016;42(3):1663–76.
  • 28. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–53.
  • 29. Boehm HP. Chemical Identification of Surface Groups. Adv Catal. 1966;16(C):179–274.
  • 30 Teng H, Xu S, Zhao C, Lv F, Liu H. Removal of Hexavalent Chromium from Aqueous Solutions by Sodium Dodecyl Sulfate Stabilized Nano Zero-Valent Iron: A Kinetics, Equilibrium, Thermodynamics Study. Sep Sci Technol. 2013;48(11):1729–37.
  • 31. Maity D, Kanti Bain M, Bhowmick B, Sarkar J, Saha S, Acharya K, et al. In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer. J Appl Polym Sci. 2011;122(4)2189-96.
  • 32. Srinivasan NR, Shankar PA, Bandyopadhyaya R. Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection. Carbon N Y. 2013;57(22):1–10.
  • 33. Peña-González CE, Pedziwiatr-Werbicka E, Shcharbin D, Guerrero-Beltrán C, Abashkin V, Loznikova S, et al. Gold nanoparticles stabilized by cationic carbosilane dendrons: Synthesis and biological properties. Dalt Trans. 2017;46(27):8736–45.
  • 34. El-Shishtawy RM, Asiri AM, Al-Otaibi MM. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2011;79(5):1505–10.
  • 35. Ho CM, Yau SKW, Lok CN, So MH, Che CM. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: A kinetic and mechanistic study. Chem - An Asian J. 2010;5(2):285–93.
  • 36. Dickinson E, Lopez G. Comparison of the emulsifying properties of fish gelatin and commercial milk proteins. J Food Sci. 2001;66(1):118–23.
  • 37. Hashim DM, Man YBC, Norakasha R, Shuhaimi M, Salmah Y, Syahariza ZA. Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 2010;118(3):856–60.
  • 38. Solanki PR. Gelatin Nanoparticles as a Delivery System for Proteins. J Nanomedicine Res. 2015;2(1):2–4.
  • 39. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31(6):865–73.
  • 40. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;8:4467-79.
  • 41. Pandey S, Goswami GK, Nanda KK. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol. 2012;51(4):583–9.
  • 42. Wang X, Chen Y. A new two-phase system for the preparation of nearly monodisperse silver nanoparticles. Mater Lett. 2008; 62(28):4366-68.
  • 43. Das D, Samal DP, BC M. Preparation of Activated Carbon from Green Coconut Shell and its Characterization. J Chem Eng Process Technol. 2015;06(05).
  • 44. Tuan TQ, Son N Van, Dung HTK, Luong NH, Thuy BT, Anh NT Van, et al. Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J Hazard Mater. 2011;192(3):1321–9.
  • 45. Karthik C, Radha K V. Silver nanoparticle loaded activated carbon: An escalated nanocomposite with antimicrobial property. Orient J Chem. 2016;32(1):735–41.
  • 46. Chun Y, Sheng G, Chiou GT, Xing B. Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol. 2004;38(17):4649–55.
  • 47. Ridder DJ de. Adsorption of organic micropollutants onto activated carbon and zeolites. Vol. P.hD, Water management academic press. 2012.
  • 48. Senthilkumaar S, Varadarajan PR, Porkodi K, Subbhuraam C V. Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. J Colloid Interface Sci. 2005;284(1):78–82.
  • 49. Zhu HY, Fu YQ, Jiang R, Jiang JH, Xiao L, Zeng GM, et al. Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chem Eng J. 2011;173(2):494–502.
  • 50. Ghaedi M, Sadeghian B, Pebdani AA, Sahraei R, Daneshfar A, Duran C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J. 2012;187:133–41.
  • 51. Garg VKKR, Gupta R. Dyes Pigments. Remov malachite green Dye from aqueous Solut by Adsorpt using agro-industry waste a case study Prosopis cineraria. 2004;62:1–10.
  • 52. Honeyman BD, Santschi PH. Metals in aquatic systems. Environ Sci Technol. 1988;22(8):862–71.
  • 53. Manohar DM, Anoop Krishnan K, Anirudhan TS. Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res. 2002;36(6):1609–19.
  • 54. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye Pigment. 2008;77(1):16–23.
  • 55. Norde W, Lyklema J. Thermodynamics of protein adsorption. Theory with special reference to the adsorption of human plasma albumin and bovine pancreas ribonuclease at polystyrene surfaces. J Colloid Interface Sci. 1979;71(2):350–66.
  • 56. Bhatnagar A, Sillanpää M. Removal of natural organic matter (NOM) and its constituents from water by adsorption – A review. Chemosphere. 2017;166:497–510.
  • 57. Jalil AA, Triwahyono S, Adam SH, Rahim ND, Aziz MAA, Hairom NHH, et al. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J Hazard Mater. 2010;181(1–3):755–62.
  • 58. Ng C, Losso JN, Marshall WE, Rao RM. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system. Bioresour Technol. 2002;85(2):131–5.
  • 59. Da A. Adsorption-- from theory to practice. 2001; 93(1-3):135-224.
  • 60. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(1):2–10.
  • 61. Sogut E, Caliskan N. isotherm and kinetic studies of Pb (ii) adsorption on raw and modified diatomite by using non-linear regression method. Fresenius Environ Bull. 2017;26(4):2720–8.
  • 62. Günay A, Arslankaya E, Tosun I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater. 2007;146(1–2):362–71.
  • 63. Özer A, Özer D, Özer A. The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): Determination of the equilibrium and thermodynamic parameters. Process Biochem. 2004;39(12):2183–91.
  • 64. Nekouei F, Nekouei S, Tyagi I, Gupta VK. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J Mol Liq. 2015;201:124–33.
  • 65. Kilislioglu A, Bilgin B. Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl Radiat Isot. 2003;58(2):155-60.
  • 66. Weil KG. M. J. Jaycock, G. D. Parfitt: Chemistry of Interfaces. Ellis Horwood Limited Publishers, Chichester 1981.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya
Bölüm Makaleler
Yazarlar

Ayşenur Ceryan 0000-0003-3051-630X

Nurettin Eltuğral 0000-0001-6393-9611

Proje Numarası Project 16/1-DS-245
Yayımlanma Tarihi 31 Ağustos 2022
Gönderilme Tarihi 14 Nisan 2022
Kabul Tarihi 12 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 3

Kaynak Göster

Vancouver Ceryan A, Eltuğral N. Isotherm and thermodynamic studies on the removal of gelatin-stabilized silver nanoparticles from water by activated carbon. JOTCSA. 2022;9(3):919-38.