Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 11 Sayı: 2, 461 - 466
https://doi.org/10.18596/jotcsa.1342058

Öz

Kaynakça

  • 1. Senberber FT, Derun EM. Thermal Kinetics and Thermodynamics of the Dehydration Reaction of Inyoite (Ca2B6O6(OH)10 ⋅ 8H2O). Glass Phys Chem. 2020;46(1):64-71. Available from: <URL>
  • 2. Alp B, Atakul Savrik S, Balkose D. Preparation and Characterization of Copper Borates as Lubricant Additives. J Mater Sci Eng B. 2014;4(4). Available from: <URL>
  • 3. Thatribud A, Tungsurat T, Pengpan T. First-principles study on electronic and optical properties of transparent conducting oxide CuBO2. Comput Mater Sci. 2014;81:601-6. Available from: <URL>
  • 4. Zia W, Siraj K, Faiz H, Firdos A. A facile synthesis of single phase delafossite CuBO 2 powders. Mater Res Express. 2019; 6(9):096314. Available from: <URL>
  • 5. Santra S, Das NS, Maiti S, Chattopadhyay KK. Wide band gap p-type CuBO2 nanostructures by hydrothermal route and fabrication high quality p-CuBO2/n-ZnO nano-heterojunction. Chem Phys Lett. 2014;604:97-100. Available from: <URL>
  • 6. Pisarev RV, Boldyrev KN, Popova MN, Smirnov AN, Davydov VYu, Bezmaternykh LN, vd. Lattice dynamics of piezoelectric copper metaborate CuB2O4. Phys Rev B. 2013;88(2):024301. Available from: <URL>
  • 7. Liu LL, Zhu D, Cao LL, Stephan DW. N-Heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH + , X = S, Se, Te). Dalton Trans. 2017;46(10):3095-9. Available from: <URL>
  • 8. Soylu M, Al-Ghamdi AA, Omran SB, Yakuphanoglu F. Rectifying structure with high voltage operation based on CuBO2 as an UV photocatalyst. J Alloys Compd. 2014;617:602-8. Available from: <URL>
  • 9. Zhang HH, Kong N, Wang J, Liu ZH. Thermodynamic properties of microporous materials for two copper borates, MCuB7O12·H2O (M=Na,K). J Chem Thermodyn. 2015;89:164-8. Available from: <URL>
  • 10. Hu ZS, Dong JX, Chen GX, Lou F. Preparation of nanometer copper borate with supercritical carbon dioxide drying. Powder Technol. 1999;102(2):171-6. Available from: <URL>
  • 11. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications. Materials. 2021;14(14):4017. Available from:https://www.mdpi.com/1996-1944/14/14/4017
  • 12. Wang JJ, Wei Q, Yang BF, Yang GY. Two New Copper Borates with Mesoscale Cubic Supramolecular Cages Assembled from {Cu4@B20} Clusters. Chem - Eur J. 2017;23(12):2774-7. Available from: <URL>
  • 13. Ursu D, Dabici A, Miclau M, Miclau N. Low-temperature hydrothermal synthesis of hierarchical flower-like CuB2O4 superstructures. Process Appl Ceram. 2020;14(2):113-8. Available from: <URL>
  • 14. Zheng Y, Wang Z, Tian Y, Qu Y, Li S, An D, vd. Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies. Colloids Surf Physicochem Eng Asp. 2009;349(1-3):156-61. Available from: <URL>
  • 15. Khalili D, Evazi R, Neshat A, Aboonajmi J. Copper(I) Complex of Dihydro Bis(2‐Mercapto Benzimidazolyl) Borate as an Efficient Homogeneous Catalyst for the Synthesis of 2 H ‐Indazoles and 5‐Substituted 1 H ‐Tetrazoles. Chemistry Select. 2021;6(4):746-53. Available from: <URL>
  • 16. Kipcak AS, Senberber FT, Aydin Yuksel S, Derun EM, Piskin S. Synthesis, characterisation, electrical and optical properties of copper borate compounds. Mater Res Bull. 2015;70:442-8. Available from: <URL>
  • 17. Senberber Dumanli FT, Moroydor Derun E. A comparative study of ultrasonic-assisted methods to synthesise spinel (CoAl2O4) nanoparticles. Ceram Int. 2022;48(13):19047-55. Available from: <URL>
  • 18. Fogler HS. Elements Of Chemical Reaction Engineering. Prentice Hall India; 1999. 1004 s.
  • 19. Yongzhong J, Shiyang G, Shuping X, Jun L. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56(7):1291-7.

Sonochemical Synthesis of Copper Borates: Effect of Reaction Conditions on the Characteristic Properties

Yıl 2024, Cilt: 11 Sayı: 2, 461 - 466
https://doi.org/10.18596/jotcsa.1342058

Öz

The effect of ultrasonic treatment on liquid-state production and the characteristic features of synthesized powder were studied in liquid-state conditions. In sonochemical synthesis, the operation parameters of mole ratio, reaction temperature, and time were optimized. The synthesis was achieved in moderate conditions such as mole ratio of copper: sodium: boron (Cu: Na: B) 1:2:1, 70°C and 2.5 minutes. The prepared samples were identified as copper borate (Cu(BO2)2) with the powder diffraction file number "00-001-0472". The reaction yields were also increased from 50% to 71.5% with the modification of the experimental procedure. The specific FT-IR peaks were observed at 1090, 985, 872, 781 and 731 cm-1 band values. In the morphological analyses, the agglomerations of multi-angular particles were seen. The results showed the affirmative effects of the possible use of the ultrasonic treatment on both the practical synthesis and the increase of characteristics.

Kaynakça

  • 1. Senberber FT, Derun EM. Thermal Kinetics and Thermodynamics of the Dehydration Reaction of Inyoite (Ca2B6O6(OH)10 ⋅ 8H2O). Glass Phys Chem. 2020;46(1):64-71. Available from: <URL>
  • 2. Alp B, Atakul Savrik S, Balkose D. Preparation and Characterization of Copper Borates as Lubricant Additives. J Mater Sci Eng B. 2014;4(4). Available from: <URL>
  • 3. Thatribud A, Tungsurat T, Pengpan T. First-principles study on electronic and optical properties of transparent conducting oxide CuBO2. Comput Mater Sci. 2014;81:601-6. Available from: <URL>
  • 4. Zia W, Siraj K, Faiz H, Firdos A. A facile synthesis of single phase delafossite CuBO 2 powders. Mater Res Express. 2019; 6(9):096314. Available from: <URL>
  • 5. Santra S, Das NS, Maiti S, Chattopadhyay KK. Wide band gap p-type CuBO2 nanostructures by hydrothermal route and fabrication high quality p-CuBO2/n-ZnO nano-heterojunction. Chem Phys Lett. 2014;604:97-100. Available from: <URL>
  • 6. Pisarev RV, Boldyrev KN, Popova MN, Smirnov AN, Davydov VYu, Bezmaternykh LN, vd. Lattice dynamics of piezoelectric copper metaborate CuB2O4. Phys Rev B. 2013;88(2):024301. Available from: <URL>
  • 7. Liu LL, Zhu D, Cao LL, Stephan DW. N-Heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH + , X = S, Se, Te). Dalton Trans. 2017;46(10):3095-9. Available from: <URL>
  • 8. Soylu M, Al-Ghamdi AA, Omran SB, Yakuphanoglu F. Rectifying structure with high voltage operation based on CuBO2 as an UV photocatalyst. J Alloys Compd. 2014;617:602-8. Available from: <URL>
  • 9. Zhang HH, Kong N, Wang J, Liu ZH. Thermodynamic properties of microporous materials for two copper borates, MCuB7O12·H2O (M=Na,K). J Chem Thermodyn. 2015;89:164-8. Available from: <URL>
  • 10. Hu ZS, Dong JX, Chen GX, Lou F. Preparation of nanometer copper borate with supercritical carbon dioxide drying. Powder Technol. 1999;102(2):171-6. Available from: <URL>
  • 11. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications. Materials. 2021;14(14):4017. Available from:https://www.mdpi.com/1996-1944/14/14/4017
  • 12. Wang JJ, Wei Q, Yang BF, Yang GY. Two New Copper Borates with Mesoscale Cubic Supramolecular Cages Assembled from {Cu4@B20} Clusters. Chem - Eur J. 2017;23(12):2774-7. Available from: <URL>
  • 13. Ursu D, Dabici A, Miclau M, Miclau N. Low-temperature hydrothermal synthesis of hierarchical flower-like CuB2O4 superstructures. Process Appl Ceram. 2020;14(2):113-8. Available from: <URL>
  • 14. Zheng Y, Wang Z, Tian Y, Qu Y, Li S, An D, vd. Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies. Colloids Surf Physicochem Eng Asp. 2009;349(1-3):156-61. Available from: <URL>
  • 15. Khalili D, Evazi R, Neshat A, Aboonajmi J. Copper(I) Complex of Dihydro Bis(2‐Mercapto Benzimidazolyl) Borate as an Efficient Homogeneous Catalyst for the Synthesis of 2 H ‐Indazoles and 5‐Substituted 1 H ‐Tetrazoles. Chemistry Select. 2021;6(4):746-53. Available from: <URL>
  • 16. Kipcak AS, Senberber FT, Aydin Yuksel S, Derun EM, Piskin S. Synthesis, characterisation, electrical and optical properties of copper borate compounds. Mater Res Bull. 2015;70:442-8. Available from: <URL>
  • 17. Senberber Dumanli FT, Moroydor Derun E. A comparative study of ultrasonic-assisted methods to synthesise spinel (CoAl2O4) nanoparticles. Ceram Int. 2022;48(13):19047-55. Available from: <URL>
  • 18. Fogler HS. Elements Of Chemical Reaction Engineering. Prentice Hall India; 1999. 1004 s.
  • 19. Yongzhong J, Shiyang G, Shuping X, Jun L. FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56(7):1291-7.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ametal Kimyası, İnorganik Malzemeler
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Fatma Tuğçe Şenberber Dumanlı 0000-0002-3257-1524

Sibel Karaağaç 0000-0001-7713-1365

Azmi Seyhun Kıpçak 0000-0003-2068-6065

Emek Möröydor Derun 0000-0002-3257-1524

Yayımlanma Tarihi
Gönderilme Tarihi 12 Ağustos 2023
Kabul Tarihi 6 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 2

Kaynak Göster

Vancouver Şenberber Dumanlı FT, Karaağaç S, Kıpçak AS, Möröydor Derun E. Sonochemical Synthesis of Copper Borates: Effect of Reaction Conditions on the Characteristic Properties. JOTCSA. 11(2):461-6.