Research Article
BibTex RIS Cite

Evaluation of Structural and Dielectric Properties of Eu3+, B3+ co-doped Ba2GdMO6 (M=Nb, Ta) Double Perovskite Ceramics

Year 2024, Volume: 11 Issue: 3, 1099 - 1110, 30.08.2024
https://doi.org/10.18596/jotcsa.1444484

Abstract

In the study, the structural and dielectric properties of Ba2GdMO6 (M=Nb, Ta) double perovskite ceramics produced with solid-state method were examined by co-doping xEu3+ and yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 70 and 100 mol%). XRD (X-ray diffraction) results of the ceramic samples exhibited a single-phase structure with cubic symmetry Fm-3m space group, while increasing B3+ concentration led to an increase in crystallite sizes and lattice parameters up to 50 mol% in both series. SEM (scanning electron microscopy) examinations revealed the presence of boron-supported grain growth and agglomeration in the grains of both series, and also a slight angularity occurred in grain shape at high B3+ concentrations. The dielectric constant (ε') of the ceramic samples in both series increased with increasing boron concentration up to 50 mol%, and it was approximately 33.5 and 35.4 at 20 Hz for the Ba2Gd1-xNbO6:xEu3+, yB3+ and Ba2Gd1-xTaO6:xEu3+, yB3+, respectively. The decrease in the dielectric constant after 50 mol% may be attributed to the presence of increased strain in the structure, as shown by the decrease in crystallite size. The increasing B3+ concentration caused a decrease in dielectric loss (tan δ) in both series, which was attributed to the suppression of oxygen vacancies due to the increased presence of B3+ and hence to a decrease in ionic conductivity and dielectric loss.

References

  • 1. Luo Y, Chen Y, Li L, Chen J, Pang T, Chen L, et al. Three-mode fluorescence thermometers based on double perovskite Ba2GdNbO6:Eu3+,Mn4+ phosphors. Ceram Int [Internet]. 2023 Dec;49(23):38007–14. Available from: <URL>.
  • 2. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6:Eu3+ for WLEDs. Optik (Stuttg) [Internet]. 2020 Jan;201:163536. Available from: <URL>.
  • 3. Sun Q, Wang S, Devakumar B, Sun L, Liang J, Huang X. Synthesis, Crystal Structure, and Photoluminescence Characteristics of High-Efficiency Deep-Red Emitting Ba2GdTaO6 :Mn4+ Phosphors. ACS Omega [Internet]. 2019 Aug 20;4(8):13474–80. Available from: <URL>.
  • 4. Han B, Zhu J, Chu C, Yang X, Wang Y, Li K, et al. Sm3+-Mn4+ activated Sr2GdTaO6 red phosphor for plant growth lighting and optical temperature sensing. Sensors Actuators A Phys [Internet]. 2023 Jan;349:114089. Available from: <URL>.
  • 5. Sun J, Sun Z, Li Y, Jin Z, Ma L, Lu R, et al. Realization of plant growth lighting and temperature detecting based on novel Bi3+, Sm3+ and Mn4+ doped Ca2GdNbO6 double perovskite phosphors. Opt Mater (Amst) [Internet]. 2023 Nov;145:114394. Available from: <URL>.
  • 6. Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, et al. Concentration- and temperature- dependent luminescence quenching and optical transition of Sr2GdTaO6: Eu3+ phosphor for potential applications in white LEDs. Results Phys [Internet]. 2024 Jan;56:107238. Available from: <URL>.
  • 7. Han Y jie, Wang S, Liu H, Shi L, Zhang J ying, Zhang Z ni, et al. Synthesis and luminescent properties of a novel deep-red phosphor Sr2GdNbO6:Mn4+ for indoor plant growth lighting. J Lumin [Internet]. 2020 Apr;220:116968. Available from: <URL>.
  • 8. Ranjbar B, Pavan A, Kennedy BJ, Zhang Z. Structural and magnetic properties of the ruthenium double perovskites Ba2−xSrxYRuO6. Dalt Trans [Internet]. 2015;44(23):10689–99. Available from: <URL>. 9. Shimizu Y, Sakagami S, Goto K, Nakachi Y, Ueda K. Tricolor luminescence in rare earth doped CaZrO3 perovskite oxides. Mater Sci Eng B [Internet]. 2009 Apr;161(1–3):100–3. Available from: <URL>.
  • 10. Wang S, Sun Q, Devakumar B, Liang J, Sun L, Huang X. Novel highly efficient and thermally stable Ca2GdTaO6:Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. J Alloys Compd [Internet]. 2019 Oct;804:93–9. Available from: <URL>.
  • 11. Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J. Excellent red phosphors of double perovskite Ca2LaMO6:Eu (M=Sb, Nb, Ta) with distorted coordination environment. J Solid State Chem [Internet]. 2011 Dec;184(12):3324–8. Available from: <URL>.
  • 12. Chen J, Zhao S, Zhao Z, Liao M, Pan S, Feng J, et al. The structure and luminescence properties of blue–green-emitting Sr2YNbO6: Bi3+ phosphors. J Lumin [Internet]. 2021 Nov;239:118336. Available from: <URL>.
  • 13. Baral SC, Maneesha P, Rini EG, Sen S. Recent advances in LaNiMnO double perovskites for various applications; challenges and opportunities. Prog Solid State Chem [Internet]. 2023 Dec;72:100429. Available from: <URL>.
  • 14. Wang CF, Shi C, Zheng A, Wu Y, Ye L, Wang N, et al. Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. Mater Horizons [Internet]. 2022;9(9):2450–9. Available from: <URL>.
  • 15. Mishra S, Choudhary RNP, Parida SK. A multifunctional transition metal based double perovskite Ba2(FeW)O6: Structural, microstructural, optical, electrical and ferroelectric properties. Ceram Int [Internet]. 2023 Jul;49(14):22702–17. Available from: <URL>.
  • 16. Parida BN, Panda N, Padhee R, Parida RK. Ferroelectric and optical behavior of Pb0.5Ba1.5BiNbO6 double perovskite. Ferroelectrics [Internet]. 2019 Feb 17;540(1):18–28. Available from: <URL>.
  • 17. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 18. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 19. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 20. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys B Condens Matter [Internet]. 2020 May;585:412106. Available from: <URL>.
  • 21. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Synthesis and Optical Characterization of Red-Emitting BaTa2O6:Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 21;26(5):1671–8. Available from: <URL>.
  • 22. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 20;26(5):1637–43. Available from: <URL>.
  • 23. İlhan M. Synthesis, structural characterization, and photoluminescence properties of TTB‐type PbTa2O6 :Eu3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 30;14(6):1144–50. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. J Turkish Chem Soc Sect A Chem [Internet]. 2023 Aug 30;10(3):745–56. Available from: <URL>.
  • 25. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6 :Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021;11(18):10451–62. Available from: <URL>.
  • 26. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 27. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J Alloys Compd [Internet]. 2022 Apr;901:163626. Available from: <URL>.
  • 28. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 29. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 30. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 31. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12 Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 32. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 33. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 34. Koshy J, Thomas JK, Kurian J, Yadava YP, Damodaran AD. Development and characterization of GdBa2NbO6, a new ceramic substrate for YBCO thick films. Mater Lett [Internet]. 1993 Oct;17(6):393–7. Available from: <URL>.
  • 35. Babu TGN, Koshy J. Ba2GdTaO6, a ceramic substrate for YBa2Cu3O7−gd films. Mater Lett [Internet]. 1997 Nov;33(1–2):7–11. Available from: <URL>.
  • 36. Tahar RBH, Tahar NBH. Boron-doped zinc oxide thin films prepared by sol-gel technique. J Mater Sci [Internet]. 2005 Oct;40(19):5285–9. Available from: <URL>.
  • 37. Addonizio ML, Diletto C. Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films. Sol Energy Mater Sol Cells [Internet]. 2008 Nov;92(11):1488–94. Available from: <URL>.
  • 38. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 39. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 40. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M = Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 41. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 42. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 43. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3(0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 44. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 45. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 46. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 47. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 48. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 49. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 50. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 51. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 52. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 53. Caruntu G, Rarig Jr R, Dumitru I, O’Connor CJ. Annealing effects on the crystallite size and dielectric properties of ultrafine Ba1−xSrxTiO3(0<x<1) powders synthesized through an oxalate-complex precursor. J Mater Chem [Internet]. 2006;16(8):752–8. Available from: <URL>.
  • 54. Kim L, Jung D, Kim J, Kim YS, Lee J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett [Internet]. 2003 Mar 31;82(13):2118–20. Available from: <URL>.
  • 55. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 56. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 57. Iqbal MJ, Yaqub N, Sepiol B, Ismail B. A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4. Mater Res Bull [Internet]. 2011 Nov;46(11):1837–42. Available from: <URL>.
  • 58. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 59. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 60. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 61. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 62. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
Year 2024, Volume: 11 Issue: 3, 1099 - 1110, 30.08.2024
https://doi.org/10.18596/jotcsa.1444484

Abstract

References

  • 1. Luo Y, Chen Y, Li L, Chen J, Pang T, Chen L, et al. Three-mode fluorescence thermometers based on double perovskite Ba2GdNbO6:Eu3+,Mn4+ phosphors. Ceram Int [Internet]. 2023 Dec;49(23):38007–14. Available from: <URL>.
  • 2. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6:Eu3+ for WLEDs. Optik (Stuttg) [Internet]. 2020 Jan;201:163536. Available from: <URL>.
  • 3. Sun Q, Wang S, Devakumar B, Sun L, Liang J, Huang X. Synthesis, Crystal Structure, and Photoluminescence Characteristics of High-Efficiency Deep-Red Emitting Ba2GdTaO6 :Mn4+ Phosphors. ACS Omega [Internet]. 2019 Aug 20;4(8):13474–80. Available from: <URL>.
  • 4. Han B, Zhu J, Chu C, Yang X, Wang Y, Li K, et al. Sm3+-Mn4+ activated Sr2GdTaO6 red phosphor for plant growth lighting and optical temperature sensing. Sensors Actuators A Phys [Internet]. 2023 Jan;349:114089. Available from: <URL>.
  • 5. Sun J, Sun Z, Li Y, Jin Z, Ma L, Lu R, et al. Realization of plant growth lighting and temperature detecting based on novel Bi3+, Sm3+ and Mn4+ doped Ca2GdNbO6 double perovskite phosphors. Opt Mater (Amst) [Internet]. 2023 Nov;145:114394. Available from: <URL>.
  • 6. Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, et al. Concentration- and temperature- dependent luminescence quenching and optical transition of Sr2GdTaO6: Eu3+ phosphor for potential applications in white LEDs. Results Phys [Internet]. 2024 Jan;56:107238. Available from: <URL>.
  • 7. Han Y jie, Wang S, Liu H, Shi L, Zhang J ying, Zhang Z ni, et al. Synthesis and luminescent properties of a novel deep-red phosphor Sr2GdNbO6:Mn4+ for indoor plant growth lighting. J Lumin [Internet]. 2020 Apr;220:116968. Available from: <URL>.
  • 8. Ranjbar B, Pavan A, Kennedy BJ, Zhang Z. Structural and magnetic properties of the ruthenium double perovskites Ba2−xSrxYRuO6. Dalt Trans [Internet]. 2015;44(23):10689–99. Available from: <URL>. 9. Shimizu Y, Sakagami S, Goto K, Nakachi Y, Ueda K. Tricolor luminescence in rare earth doped CaZrO3 perovskite oxides. Mater Sci Eng B [Internet]. 2009 Apr;161(1–3):100–3. Available from: <URL>.
  • 10. Wang S, Sun Q, Devakumar B, Liang J, Sun L, Huang X. Novel highly efficient and thermally stable Ca2GdTaO6:Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. J Alloys Compd [Internet]. 2019 Oct;804:93–9. Available from: <URL>.
  • 11. Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J. Excellent red phosphors of double perovskite Ca2LaMO6:Eu (M=Sb, Nb, Ta) with distorted coordination environment. J Solid State Chem [Internet]. 2011 Dec;184(12):3324–8. Available from: <URL>.
  • 12. Chen J, Zhao S, Zhao Z, Liao M, Pan S, Feng J, et al. The structure and luminescence properties of blue–green-emitting Sr2YNbO6: Bi3+ phosphors. J Lumin [Internet]. 2021 Nov;239:118336. Available from: <URL>.
  • 13. Baral SC, Maneesha P, Rini EG, Sen S. Recent advances in LaNiMnO double perovskites for various applications; challenges and opportunities. Prog Solid State Chem [Internet]. 2023 Dec;72:100429. Available from: <URL>.
  • 14. Wang CF, Shi C, Zheng A, Wu Y, Ye L, Wang N, et al. Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. Mater Horizons [Internet]. 2022;9(9):2450–9. Available from: <URL>.
  • 15. Mishra S, Choudhary RNP, Parida SK. A multifunctional transition metal based double perovskite Ba2(FeW)O6: Structural, microstructural, optical, electrical and ferroelectric properties. Ceram Int [Internet]. 2023 Jul;49(14):22702–17. Available from: <URL>.
  • 16. Parida BN, Panda N, Padhee R, Parida RK. Ferroelectric and optical behavior of Pb0.5Ba1.5BiNbO6 double perovskite. Ferroelectrics [Internet]. 2019 Feb 17;540(1):18–28. Available from: <URL>.
  • 17. Bendahhou A, Marchet P, El-Houssaine A, El Barkany S, Abou-Salama M. Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm [Internet]. 2021;23(1):163–73. Available from: <URL>.
  • 18. Jindal S, Vasishth A, Devi S, Anand G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr Ferroelectr [Internet]. 2018 Jan 2;186(1):1–9. Available from: <URL>.
  • 19. Shimizu K, Kato H, Kobayashi M, Kakihana M. Synthesis and photocatalytic properties of tetragonal tungsten bronze type oxynitrides. Appl Catal B Environ [Internet]. 2017 Jun;206:444–8. Available from: <URL>.
  • 20. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys B Condens Matter [Internet]. 2020 May;585:412106. Available from: <URL>.
  • 21. İlhan M, Ekmekçi MK, Mergen A, Yaman C. Synthesis and Optical Characterization of Red-Emitting BaTa2O6:Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 21;26(5):1671–8. Available from: <URL>.
  • 22. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and Optical Properties of Novel Red-Emitting PbNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Sep 20;26(5):1637–43. Available from: <URL>.
  • 23. İlhan M. Synthesis, structural characterization, and photoluminescence properties of TTB‐type PbTa2O6 :Eu3+ phosphor. Int J Appl Ceram Technol [Internet]. 2017 Nov 30;14(6):1144–50. Available from: <URL>.
  • 24. İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. J Turkish Chem Soc Sect A Chem [Internet]. 2023 Aug 30;10(3):745–56. Available from: <URL>.
  • 25. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6 :Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv [Internet]. 2021;11(18):10451–62. Available from: <URL>.
  • 26. Başak AS, Ekmekçi MK, Erdem M, Ilhan M, Mergen A. Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors. J Fluoresc [Internet]. 2016 Mar 11;26(2):719–24. Available from: <URL>.
  • 27. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J Alloys Compd [Internet]. 2022 Apr;901:163626. Available from: <URL>.
  • 28. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6 :Eu3+ phosphor. RSC Adv [Internet]. 2023;13(18):12375–85. Available from: <URL>.
  • 29. İlhan M, Güleryüz LF, Katı Mİ. Exploring the effect of boron on the grain morphology change and spectral properties of Eu3+ activated barium tantalate phosphor. RSC Adv [Internet]. 2024;14(4):2687–96. Available from: <URL>.
  • 30. Li Z, Zhou W, Su X, Luo F, Huang Y, Wang C. Effect of boron doping on microwave dielectric properties of SiC powder synthesized by combustion synthesis. J Alloys Compd [Internet]. 2011 Jan;509(3):973–6. Available from: <URL>.
  • 31. Mazumder R, Seal A, Sen A, Maiti HS. Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu3Ti4O12 Ferroelectrics [Internet]. 2005 Oct;326(1):103–8. Available from: <URL>.
  • 32. Zhang X, Wang B, Huang W, Chen Y, Wang G, Zeng L, et al. Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. J Am Chem Soc [Internet]. 2018 Oct 3;140(39):12501–10. Available from: <URL>.
  • 33. Cullity BD, Stock SR. Elements of X-ray Diffraction. USA: Prentice Hall; 2001.
  • 34. Koshy J, Thomas JK, Kurian J, Yadava YP, Damodaran AD. Development and characterization of GdBa2NbO6, a new ceramic substrate for YBCO thick films. Mater Lett [Internet]. 1993 Oct;17(6):393–7. Available from: <URL>.
  • 35. Babu TGN, Koshy J. Ba2GdTaO6, a ceramic substrate for YBa2Cu3O7−gd films. Mater Lett [Internet]. 1997 Nov;33(1–2):7–11. Available from: <URL>.
  • 36. Tahar RBH, Tahar NBH. Boron-doped zinc oxide thin films prepared by sol-gel technique. J Mater Sci [Internet]. 2005 Oct;40(19):5285–9. Available from: <URL>.
  • 37. Addonizio ML, Diletto C. Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films. Sol Energy Mater Sol Cells [Internet]. 2008 Nov;92(11):1488–94. Available from: <URL>.
  • 38. İlhan M, Ekmekçi MK, Güleryüz LF. Effect of boron incorporation on the structural, morphological, and spectral properties of CdNb2O6:Dy3+ phosphor synthesized by molten salt process. Mater Sci Eng B [Internet]. 2023 Dec;298:116858. Available from: <URL>.
  • 39. Polyxeni V, Nikolaos D P, Nikos S, Sotirios X, Evangelos H. Temperature effects on grain growth phenomena and magnetic properties of silicon steels used in marine applications. Ann Mar Sci [Internet]. 2023 Jun 21;7(1):40–4. Available from: <URL>.
  • 40. Güleryüz LF, İlhan M. Structural, morphological, spectral properties and high quantum efficiency of Eu3+, B3+ co-activated double perovskite Ba2GdMO6 (M = Nb, Ta) phosphors. Mater Sci Eng B [Internet]. 2024 Jun;304:117373. Available from: <URL>.
  • 41. Mahapatro J, Agrawal S. Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram Int [Internet]. 2021 Jul;47(14):20529–43. Available from: <URL>.
  • 42. Evangeline T G, Annamalai A R, Ctibor P. Effect of Europium Addition on the Microstructure and Dielectric Properties of CCTO Ceramic Prepared Using Conventional and Microwave Sintering. Molecules [Internet]. 2023 Feb 8;28(4):1649. Available from: <URL>.
  • 43. Rayssi C, El.Kossi S, Dhahri J, Khirouni K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3(0≤x≤0.1). RSC Adv [Internet]. 2018;8(31):17139–50. Available from: <URL>.
  • 44. Kadam AA, Shinde SS, Yadav SP, Patil PS, Rajpure KY. Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater [Internet]. 2013 Mar;329:59–64. Available from: <URL>.
  • 45. Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δ tungsten bronze ceramics. Mater Res Bull [Internet]. 2013 May;48(5):1934–8. Available from: <URL>.
  • 46. Esha IN, Al-Amin M, Toma FTZ, Hossain E, Khan MNI, Maria KH. Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0.4Zn0.45Cu0.15Fe(2-x)EuxO4 composites using conventional double sintering ceramic method. J Ceram Process Res [Internet]. 2019 Oct;20(5):530–9. Available from: <URL>.
  • 47. Shah MR, Akther Hossain AKM. Structural and dielectric properties of La substituted polycrystalline Ca(Ti0.5Fe0.5)O3. Mater Sci [Internet]. 2013 Jan 25;31(1):80–7. Available from: <URL>.
  • 48. Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Ann Phys [Internet]. 1913 Jan 14;345(5):817–55. Available from: <URL>.
  • 49. Maxwell JC. A treatise on electricity and magnetism. London: Caleredon press, Oxford University; 1873.
  • 50. Samet M, Kallel A, Serghei A. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. J Compos Mater [Internet]. 2022 Aug 28;56(20):3197–217. Available from: <URL>.
  • 51. Saengvong P, Chanlek N, Srepusharawoot P, Harnchana V, Thongbai P. Enhancing giant dielectric properties of Ta5+ ‐doped Na1/2Y1/2Cu3Ti4O12 ceramics by engineering grain and grain boundary. J Am Ceram Soc [Internet]. 2022 May 15;105(5):3447–55. Available from: <URL>.
  • 52. Karmakar S, Mohanty HS, Behera D. Exploration of alternating current conduction mechanism and dielectric relaxation with Maxwell–Wagner effect in NiO–CdO–Gd2O3 nanocomposites. Eur Phys J Plus [Internet]. 2021 Oct 15;136(10):1038. Available from: <URL>.
  • 53. Caruntu G, Rarig Jr R, Dumitru I, O’Connor CJ. Annealing effects on the crystallite size and dielectric properties of ultrafine Ba1−xSrxTiO3(0<x<1) powders synthesized through an oxalate-complex precursor. J Mater Chem [Internet]. 2006;16(8):752–8. Available from: <URL>.
  • 54. Kim L, Jung D, Kim J, Kim YS, Lee J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl Phys Lett [Internet]. 2003 Mar 31;82(13):2118–20. Available from: <URL>.
  • 55. Sati PC, Kumar M, Chhoker S, Jewariya M. Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceram Int [Internet]. 2015 Mar;41(2):2389–98. Available from: <URL>.
  • 56. Ganguly P, Jha AK. Enhanced characteristics of Ba5SmTi3Nb7O30 ferroelectric nanocrystalline ceramic prepared by mechanical activation process: A comparative study. Mater Res Bull [Internet]. 2011 May;46(5):692–7. Available from: <URL>.
  • 57. Iqbal MJ, Yaqub N, Sepiol B, Ismail B. A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4. Mater Res Bull [Internet]. 2011 Nov;46(11):1837–42. Available from: <URL>.
  • 58. Chakrabarti A, Bera J. Effect of La-substitution on the structure and dielectric properties of BaBi4Ti4O15 ceramics. J Alloys Compd [Internet]. 2010 Sep;505(2):668–74. Available from: <URL>.
  • 59. Kumar P, Kar M. Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloys Compd [Internet]. 2014 Jan;584:566–72. Available from: <URL>.
  • 60. İlhan M, Ekmekci MK, Esmer K. Structural and dielectric properties of Eu3+,B3+ co-doped CoNb2O6 ceramic. J Turkish Chem Soc Sect A Chem [Internet]. 2024 May 15;11(2):765–74. Available from: <URL>.
  • 61. Kendall KR, Thomas JK, Loye HC. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater [Internet]. 1995 Jan 1;7(1):50–7. Available from: <URL>.
  • 62. Fei Liu S, Jun Wu Y, Li J, Ming Chen X. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba4Nd2Fe2Nb8O30 ceramics. Appl Phys Lett [Internet]. 2014 Feb 24;104(8):082912. Available from: <URL>.
There are 61 citations in total.

Details

Primary Language English
Subjects Crystallography, Inorganic Materials, Physical Properties of Materials
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

Lütfiye Feray Güleryüz 0000-0003-0052-6187

Early Pub Date July 13, 2024
Publication Date August 30, 2024
Submission Date February 28, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver İlhan M, Güleryüz LF. Evaluation of Structural and Dielectric Properties of Eu3+, B3+ co-doped Ba2GdMO6 (M=Nb, Ta) Double Perovskite Ceramics. JOTCSA. 2024;11(3):1099-110.