Review
BibTex RIS Cite

A Review of Different Synthesis Approaches to Nanoparticles: Bibliometric Profile

Year 2024, Volume: 11 Issue: 4, 1329 - 1368, 03.12.2024
https://doi.org/10.18596/jotcsa.1389331

Abstract

Nanomaterials are currently one of the most popular emerging materials used in different applications such as drug delivery, water treatment, cancer treatment, electronic, food preservations, and production of pesticide. This is due to their interesting features including size-dependent properties, lightweight, biocompatibility, amphiphilicity and biodegradability. They offer wide possibilities for modification and are used in multiple functions with enormous possibilities. Some of them are medically suitable which has opened new opportunities for medical improvement especially for human health. These characteristics also make nanomaterials one of the pioneers in green materials for various needs, especially in environmental engineering and energy sectors. In this review, several synthesis approaches for nanoparticles mainly physical, chemical, and biological have been discussed extensively. Furthermore, bibliometric analysis on the synthesis of nanoparticles was evaluated. About 117,162 publications were considered, of which 92% are journal publications. RSC Advances is the most published outlet on the synthesis of nanoparticles and China has the highest number of researchers engaged in the synthesis of nanoparticles. It was noted in the evaluation of synthesis approach that biological approach is the savest method but with a low yield, while the chemical approach offers a high yield with some level of hazardous effect. Also, the bibliometric analysis revealed that the field of nanotechnology is a trending and hot ground for research.

Ethical Statement

Nil

Supporting Institution

Nil

Project Number

Nil

References

  • 1. Rupesh Kumar M, Ranjith S, Balu H, Bharathi DR, Chandan K, Ahmed SS. Role of nanotechnology in biomedical applications: an updated review. UPI J Pharm Med Heal Sci [Internet]. 2022 Nov 8;5(2):39–43. Available from: <URL>.
  • 2. Sadeghi-Aghbash M, Rahimnejad M. Zinc phosphate nanoparticles: A review on physical, chemical, and biological synthesis and their applications. Curr Pharm Biotechnol [Internet]. 2022 Aug 16;23(10):1228–44. Available from: <URL>.
  • 3. MubarakAli D, Kim H, Venkatesh PS, Kim JW, Lee SY. A systemic review on the synthesis, characterization, and applications of palladium nanoparticles in biomedicine. Appl Biochem Biotechnol [Internet]. 2023 Jun 29;195(6):3699–718. Available from: <URL>.
  • 4. Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials [Internet]. 2022 Jan 6;15(2):427. Available from: <URL>.
  • 5. Phan TTV, Huynh TC, Manivasagan P, Mondal S, Oh J. An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials [Internet]. 2019 Dec 27;10(1):66. Available from: <URL>.
  • 6. Pandey P. Role of Nanotechnology in Electronics: A review of recent developments and patents. Recent Pat Nanotechnol [Internet]. 2022 Mar 26;16(1):45–66. Available from: <URL>.
  • 7. Ajala OJ, Tijani JO, Bankole MT, Abdulkareem AS. Wastewater treatment technologies. In: Environmental footprints and eco-design of products and processes [Internet]. Springer, Singapore; 2022. p. 1–28. Available from: <URL>.
  • 8. Ajala OJ, Khadir A, Ighalo JO, Umenweke GC. Cellulose-based nano-biosorbents in water purification. In: Nano-biosorbents for decontamination of water, air, and soil pollution [Internet]. Elsevier; 2022. p. 395–415. Available from: <URL>.
  • 9. Ajala OJ, Nwosu FO, Ahmed RK. Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays. Appl Water Sci [Internet]. 2018 Nov 30;8(7):214. Available from: <URL>.
  • 10. Nwosu FO, Ajala OJ, Okeola FO, Adebayo SA, Olanlokun OK, Eletta AO. Adsorption of chlorotriazine herbicide onto unmodified and modified kaolinite: Equilibrium, kinetic and thermodynamic studies. Egypt J Aquat Res [Internet]. 2019 Jun 1;45(2):99–107. Available from: <URL>.
  • 11. Nwosu FO, Ajala OJ, Owoyemi RM, Raheem BG. Preparation and characterization of adsorbents derived from bentonite and kaolin clays. Appl Water Sci [Internet]. 2018 Nov 10;8(7):195. Available from: <URL>.
  • 12. Abdullahi A, Ighalo J, Ajala O, Ayika S. Physicochemical analysis and heavy metals remediation of pharmaceutical ındustry effluent using bentonite clay modified by H2SO4 and HCl. J Turkish Chem Soc Sect A Chem [Internet]. 2020 Oct 30;7(3):727–44. Available from: <URL>.
  • 13. Ighalo JO, Tijani IO, Ajala OJ, Ayandele FO, Eletta OAA, Adeniyi AG. Competitive biosorption of Pb(II) and Cu(II) by functionalised Micropogonias undulates scales. Recent Innov Chem Eng [Internet]. 2021 Jan 21;13(5):425–36. Available from: <URL>.
  • 14. Libralato G, Volpi Ghirardini A, Avezzù F. Toxicity removal efficiency of decentralised sequencing batch reactor and ultra-filtration membrane bioreactors. Water Res [Internet]. 2010 Aug 1;44(15):4437–50. Available from: <URL>.
  • 15. Verma N, Kumar N. Synthesis and Biomedical Applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater Sci Eng [Internet]. 2019 Mar 11;5(3):1170–88. Available from: <URL>.
  • 16. Song Y, Rampley CPN, Chen X, Du F, Thompson IP, Huang WE. Application of bacterial whole-cell biosensors in health. In: Handbook of cell biosensors [Internet]. Cham: Springer International Publishing; 2022. p. 945–61. Available from: <URL>.
  • 17. Shafiei F, Ashnagar A, Ghavami-Lahiji M, Najafi F, Amin Marashi SM. Evaluation of antibacterial properties of dental adhesives containing metal nanoparticles. J Dent Biomater [Internet]. 2018 Mar 4;5(1):510–9. Available from: <URL>.
  • 18. Ighalo JO, Sagboye PA, Umenweke G, Ajala OJ, Omoarukhe FO, Adeyanju CA, et al. CuO nanoparticles (CuO NPs) for water treatment: A review of recent advances. Environ Nanotechnology, Monit Manag [Internet]. 2021 May 1;15:100443. Available from: <URL>.
  • 19. Ali NH, Amin MCIM, Ng SF. Sodium carboxymethyl cellulose hydrogels containing reduced graphene oxide (rGO) as a functional antibiofilm wound dressing. J Biomater Sci Polym Ed [Internet]. 2019 May 24;30(8):629–45. Available from: <URL>.
  • 20. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2018 Oct 31;46(sup1):1210–20. Available from: <URL>.
  • 21. Su M, Zhang T, Su J, Wang Z, Hu Y, Gao Y, et al. Homogeneous ZnO nanowire arrays p-n junction for blue light-emitting diode applications. Opt Express [Internet]. 2019 Aug 5;27(16):A1207–15. Available from: <URL>.
  • 22. Nayyar A, Puri V, Le DN. Internet of nano things (IoNT): Next evolutionary step in nanotechnology. nanosci nanotechnol [Internet]. 2017;7(1):4–8. Available from: <URL>.
  • 23. Hamza EK, Jaafar SN. Nanotechnology application for wireless communication system. In: Materials horizons: From nature to nanomaterials [Internet]. Springer, Singapore; 2022. p. 115–30. Available from: <URL>.
  • 24. Ajala OJ, Tijani JO, Bankole MT, Abdulkareem AS. A critical review on graphene oxide nanostructured material: Properties, synthesis, characterization and application in water and wastewater treatment. Environ Nanotechnology, Monit Manag [Internet]. 2022 Dec 1;18:100673. Available from: <URL>.
  • 25. Rawtani D, Khatri N, Tyagi S, Pandey G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manage [Internet]. 2018 Jan 15;206:749–62. Available from: <URL>.
  • 26. Li H, Zhu Y. Liquid‐Phase synthesis of iron oxide nanostructured materials and their applications. Chem – A Eur J [Internet]. 2020 Jul 27;26(42):9180–205. Available from: <URL>.
  • 27. Alam SN, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene [Internet]. 2017 Jan 10;6(1):1–18. Available from: <URL>.
  • 28. Krishnia L, Thakur P, Thakur A. Synthesis of nanoparticles by physical route. In: Synthesis and applications of nanoparticles [Internet]. Singapore: Springer Nature Singapore; 2022. p. 45–59. Available from: <URL>.
  • 29. Chen L, Hong M. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electronic Sci [Internet]. 2022;1(5):210007. Available from: <URL>.
  • 30. Muddapur UM, Alshehri S, Ghoneim MM, Mahnashi MH, Alshahrani MA, Khan AA, et al. Plant-based synthesis of gold nanoparticles and theranostic applications: A review. Molecules [Internet]. 2022 Feb 18;27(4):1391. Available from: <URL>.
  • 31. Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater [Internet]. 2022 Dec 4;5(6):1593–615. Available from: <URL>.
  • 32. Nazneen H, Rather GA, Ali A, Chakravorty A. The role of plant-mediated biosynthesised nanoparticles in agriculture. In: Sustainable agriculture [Internet]. Cham: Springer International Publishing; 2022. p. 97–117. Available from: <URL>.
  • 33. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov [Internet]. 2022 May 1;26:102336. Available from: <URL>.
  • 34. Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, et al. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostructure Chem [Internet]. 2022 Oct 15;12(5):809–31. Available from: <URL>.
  • 35. Ndaba B, Roopnarain A, Rama H, Maaza M. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy. J Integr Agric [Internet]. 2022 May 1;21(5):1225–42. Available from: <URL>.
  • 36. Chong WJ, Shen S, Li Y, Trinchi A, Pejak D, (Louis) Kyratzis I, et al. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges. J Mater Sci Technol [Internet]. 2022 Jun 1;111:120–51. Available from: <URL>.
  • 37. Rakib-Uz-Zaman SM, Hoque Apu E, Muntasir MN, Mowna SA, Khanom MG, Jahan SS, et al. Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges [Internet]. 2022 May 5;13(1):18. Available from: <URL>.
  • 38. Ahmad W, Chandra Bhatt S, Verma M, Kumar V, Kim H. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ Nanotechnology, Monit Manag [Internet]. 2022 Dec 1;18:100674. Available from: <URL>.
  • 39. Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, et al. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. nanomaterials [Internet]. 2022 Jan 28;12(3):457. Available from: <URL>.
  • 40. Kumar VB, Porat Z, Gedanken A. Synthesis of doped/hybrid carbon dots and their biomedical application. Nanomaterials [Internet]. 2022 Mar 8;12(6):898. Available from: <URL>.
  • 41. Aldeen TS, Ahmed Mohamed HE, Maaza M. ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids [Internet]. 2022 Jan 1;160:110313. Available from: <URL>.
  • 42. Das RP, Pradhan AK. An introduction to different methods of nanoparticles synthesis. In: Bio-nano interface [Internet]. Singapore: Springer Singapore; 2022. p. 21–34. Available from: <URL>.
  • 43. Sehgal S, Kumar J, Nishtha. Involvement of gold and silver nanoparticles in lung cancer nanomedicines: A review. Mater Today Proc [Internet]. 2022 Jan 1;62(P12):6468–76. Available from: <URL>.
  • 44. Koohestani H, Salmaniannezhad H, Salmaniannezhad H, Khai MR. Synthesis and characterization of MgF2/Cu coating on aluminum produced by sputtering technique. Mech Adv Compos Struct [Internet]. 2022 Nov 1;9(2):297–302. Available from: <URL>.
  • 45. Alshammari FH. Physical characterization and dielectric properties of chitosan incorporated by zinc oxide and graphene oxide nanoparticles prepared via laser ablation route. J Mater Res Technol [Internet]. 2022 Sep 1;20:740–7. Available from: <URL>.
  • 46. Sivakumar S, Kumaresan L, Bertilla DMS, Dhanabal MHV, Shanmugavelayutham G, Zhu J. Synthesis of magnetic and superhydrophobic nickel nanoparticles by plasma arc discharge method, application for efficient recoverable and repeatable oil separation from oily-water. Appl Phys A [Internet]. 2022 Jan 5;128(1):5. Available from: <URL>.
  • 47. Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, et al. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials [Internet]. 2022 Mar 15;15(6):2160. Available from: <URL>.
  • 48. Biswas MC, Chowdhury A, Hossain MM, Hossain MK. Applications, drawbacks, and future scope of nanoparticle-based polymer composites. In: Nanoparticle-Based Polymer Composites [Internet]. Elsevier; 2022. p. 243–75. Available from: <URL>.
  • 49. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine [Internet]. 2020 Jan;Volume 15:275–300. Available from: <URL>.
  • 50. Nicolae-Maranciuc A, Chicea D, Chicea LM. Ag Nanoparticles for biomedical applications—synthesis and characterization—A review. Int J Mol Sci [Internet]. 2022 May 21;23(10):5778. Available from: <URL>.
  • 51. Gomaa EZ. Microbial mediated synthesis of zinc oxide nanoparticles, characterization and multifaceted applications. J Inorg Organomet Polym Mater [Internet]. 2022 Nov 7;32(11):4114–32. Available from: <URL>.
  • 52. Subhan A, Mourad AHI, Das S. Pulsed laser synthesis of Bi-metallic nanoparticles for biomedical applications: A review. In: 2022 Advances in Science and Engineering Technology International Conferences (ASET) [Internet]. IEEE; 2022. p. 1–7. Available from: <URL>.
  • 53. Tikhonowski G V., Popov AA, Zelepukin I, Popova-Kuznetsova E, Dombrovska YI, Deev SM, et al. Laser synthesis of nanomaterials for nuclear nanomedicine. In: Kabashin A V., Farsari M, Mahjouri-Samani M, editors. Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2022 [Internet]. SPIE; 2022. p. 22. Available from: <URL>.
  • 54. Pastukhov AI, Belyaev IB, Bulmahn JC, Zelepukin I V., Popov AA, Zavestovskaya IN, et al. Laser-ablative aqueous synthesis and characterization of elemental boron nanoparticles for biomedical applications. Sci Rep [Internet]. 2022 Jun 1;12(1):9129. Available from: <URL>.
  • 55. Popov AA, Swiatkowska-Warkocka Z, Marszalek M, Tselikov G, Zelepukin I V., Al-Kattan A, et al. Laser-ablative synthesis of ultrapure magneto-plasmonic core-satellite nanocomposites for biomedical applications. Nanomaterials [Internet]. 2022 Feb 1;12(4):649. Available from: <URL>.v
  • 56. Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, et al. Synthesis, chemical–physical characterization, and biomedical applications of functional gold nanoparticles: A review. Molecules [Internet]. 2021 Sep 26;26(19):5823. Available from: <URL>.
  • 57. AlMalki FA, Khashan KS, Jabir MS, Hadi AA, Sulaiman GM, Abdulameer FA, et al. Eco-friendly synthesis of carbon nanoparticles by laser ablation in water and evaluation of their antibacterial activity. Tan B, editor. J Nanomater [Internet]. 2022 Jan 7;2022(1):7927447. Available from: <URL>.
  • 58. Le TD, Phan H, Kwon S, Park S, Jung Y, Min J, et al. Recent Advances in laser ınduced graphene: Mechanism, fabrication, properties, and applications in flexible electronics. Adv Funct Mater [Internet]. 2022 Nov 7;32(48):2205158. Available from: <URL>.
  • 59. Wasim M, Mushtaq M, Khan SU, Farooq A, Naeem MA, Khan MR, et al. Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Ind Text [Internet]. 2022 Jun 13;51(2S):1886S-1915S. Available from: <URL>.
  • 60. Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu A V. Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci [Internet]. 2020 Jul 1;281:102178. Available from: <URL>.
  • 61. Naser H, Hassan Z, Mohammad SM, Shanshool HM, Al-Hazeem NZ. Parameters influencing the absorbance of gold-silver alloy nanomaterials using the pulsed laser ablation in liquid (plal) approach: A review. Brazilian J Phys [Internet]. 2022 Jun 18;52(3):100. Available from: <URL>.
  • 62. Popov A, Tikhonowski G, Shakhov P, Popova-Kuznetsova E, Tselikov G, Romanov R, et al. Synthesis of titanium nitride nanoparticles by pulsed laser ablation in different aqueous and organic solutions. Nanomaterials [Internet]. 2022 May 13;12(10):1672. Available from: <URL>.
  • 63. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta [Internet]. 2018 Jul 1;184:537–56. Available from: <URL>.
  • 64. Fronya AA, Antonenko S V., Karpov N V., Pokryshkin NS, Eremina AS, Yakunin VG, et al. Germanium nanoparticles prepared by laser ablation in low pressure helium and nitrogen atmosphere for biophotonic applications. Materials [Internet]. 2022 Aug 2;15(15):5308. Available from: <URL>.
  • 65. Tarasenka N, Kornev V, Ramanenka A, Li R, Tarasenko N. Photoluminescent neodymium-doped ZnO nanocrystals prepared by laser ablation in solution for NIR-II fluorescence bioimaging. Heliyon [Internet]. 2022 Jun 1;8(6):e09554. Available from: <URL>.
  • 66. Mat Isa SZ, Zainon R, Tamal M. State of the Art in Gold Nanoparticle synthesisation via pulsed laser ablation in liquid and its characterisation for molecular ımaging: A review. Materials [Internet]. 2022 Jan 24;15(3):875. Available from: <URL>.
  • 67. Pattanayak S, Mollick MMR, Maity D, Chakraborty S, Dash SK, Chattopadhyay S, et al. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. J Saudi Chem Soc [Internet]. 2017 Sep 1;21(6):673–84. Available from: <URL>.
  • 68. Medina Cruz D, Mostafavi E, Vernet-Crua A, Barabadi H, Shah V, Cholula-Díaz JL, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. J Phys Mater [Internet]. 2020 Jul 1;3(3):034005. Available from: <URL>.
  • 69. Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv [Internet]. 2021 Jul 15;11(40):24722–46. Available from: <URL>.
  • 70. Mintcheva N, Yamaguchi S, Kulinich SA. Hybrid TiO2-ZnO nanomaterials prepared using laser ablation in liquid. Materials [Internet]. 2020 Feb 5;13(3):719. Available from: <URL>.
  • 71. Menazea AA, Ahmed MK. Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J Mol Struct [Internet]. 2020 Oct 15;1218:128536. Available from: <URL>.
  • 72. Zhang D, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem Rev [Internet]. 2017 Mar 8;117(5):3990–4103. Available from: <URL>.
  • 73. Theerthagiri J, Karuppasamy K, Lee SJ, Shwetharani R, Kim HS, Pasha SKK, et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci Appl [Internet]. 2022 Aug 10;11(1):250. Available from: <URL>.
  • 74. Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: Past, present and future. J Funct Biomater [Internet]. 2017 Jun 14;8(2):19. Available from: <URL>.
  • 75. Sadrolhosseini AR, Mahdi MA, Alizadeh F, Rashid SA. Laser technology and its applications. In: Laser technology and its applications [Internet]. IntechOpen; 2019. p. 63–81. Available from: <URL>.
  • 76. Su SS, Chang I. Review of production routes of nanomaterials. In: Commercialization of nanotechnologies–A case study approach [Internet]. Cham: Springer International Publishing; 2018. p. 15–29. Available from: <URL>.
  • 77. He Y, Yi C, Zhang X, Zhao W, Yu D. Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. TrAC Trends Anal Chem [Internet]. 2021 Mar 1;136:116191. Available from: <URL>.
  • 78. Makvandi P, Wang C, Zare EN, Borzacchiello A, Niu L, Tay FR. Metal‐Based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv Funct Mater [Internet]. 2020 May 17;30(22):1910021. Available from: <URL>.
  • 79. Pradeep NB, Hegde MMR, Rajendrachari S, Surendranathan AO. Investigation of microstructure and mechanical properties of microwave consolidated TiMgSr alloy prepared by high energy ball milling. Powder Technol [Internet]. 2022 Aug 1;408:117715. Available from: <URL>.
  • 80. Wallyn J, Anton N, Vandamme TF. Synthesis, principles, and properties of magnetite nanoparticles for in vivo ımaging applications—A review. Pharmaceutics [Internet]. 2019 Nov 12;11(11):601. Available from: <URL>.
  • 81. Baláž M, Tkáčiková L, Stahorský M, Casas-Luna M, Dutková E, Čelko L, et al. Ternary and quaternary nanocrystalline Cu-based sulfides as perspective antibacterial materials mechanochemically synthesized in a scalable fashion. ACS Omega [Internet]. 2022 Aug 9;7(31):27164–71. Available from: <URL>.
  • 82. Kotcherlakota R, Das S, Patra CR. Therapeutic applications of green-synthesized silver nanoparticles. In: Green synthesis, characterization and applications of nanoparticles [Internet]. Elsevier; 2019. p. 389–428. Available from: <URL>.
  • 83. Abdullah FH, Bakar NHHA, Bakar MA. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J Hazard Mater [Internet]. 2022 Feb 15;424:127416. Available from: <URL>.
  • 84. Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv [Internet]. 2022 Apr 12;4(8):1868–925. Available from: <URL>.
  • 85. Prasad S, Kumar V, Kirubanandam S, Barhoum A. Engineered nanomaterials: nanofabrication and surface functionalization. In: Emerging Applications of Nanoparticles and Architecture Nanostructures [Internet]. Elsevier; 2018. p. 305–40. Available from: <URL>.
  • 86. Shafaei A, Khayati GR. A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm. Measurement [Internet]. 2020 Feb 1;151:107199. Available from: <URL>.
  • 87. Alam S, Hossain MZ. A Simple hydrothermal protocol for the synthesis of zinc oxide nanorods. Jagannath Univ J Sci [Internet]. 2021;7(2):75–80. Available from: <URL>.
  • 88. Ghorbani HR. A review of methods for synthesis of Al nanoparticles. Orient J Chem [Internet]. 2014 Dec 31;30(4):1941–9. Available from: <URL>.
  • 89. Khan ZUH, Khan A, Chen Y, Shah NS, Muhammad N, Khan AU, et al. Biomedical applications of green synthesized Nobel metal nanoparticles. J Photochem Photobiol B Biol [Internet]. 2017 Aug 1;173:150–64. Available from: <URL>.
  • 90. Thakur AK, Sathyamurthy R, Velraj R, Lynch I. Development of a novel cellulose foam augmented with candle-soot derived carbon nanoparticles for solar-powered desalination of brackish water. Environ Sci Nano [Internet]. 2022 Apr 14;9(4):1247–70. Available from: <URL>.
  • 91. Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A Comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. nanomaterials [Internet]. 2019 Dec 2;9(12):1719. Available from: <URL>.
  • 92. Jin SE, Jin HE. Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics [Internet]. 2019 Nov 4;11(11):575. Available from: <URL>.
  • 93. Ehsan M, Waheed A, Ullah A, Kazmi A, Ali A, Raja NI, et al. Plant-based bimetallic Silver-Zinc Oxide nanoparticles: A comprehensive perspective of synthesis, biomedical applications, and future trends. Kim BS, editor. Biomed Res Int [Internet]. 2022 Apr 30;2022(1):215183. Available from: <URL>.
  • 94. Sharma A, Kumar S. Synthesis and green synthesis of silver nanoparticles. In: Engineering materials [Internet]. Springer, Cham; 2021. p. 25–64. Available from: <URL>.
  • 95. Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J Biol Sci [Internet]. 2022 Apr 1;29(4):2085–94. Available from: <URL>.
  • 96. Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci [Internet]. 2019 Feb 17;20(4):865. Available from: <URL>.
  • 97. Hara R, Fukuoka T, Takahashi R, Utsumi Y, Yamaguchi A. Surface-enhanced raman spectroscopy using a coffee-ring-type three-dimensional silver nanostructure. RSC Adv [Internet]. 2015 Dec 1;5(2):1378–84. Available from: <URL>.
  • 98. Abdullah AH, Jasim AH, Eltayef EM. The medical applications of silver nanoparticles. Int J Pharmacogn Life Sci [Internet]. 2022 Jan 1;3(1):1–6. Available from: <URL>.
  • 99. Natsuki J, Natsuki T, Hashimoto Y. A review of silver nanoparticles: Synthesis methods, properties and applications. Int J Mater Sci Appl [Internet]. 2015;4(5):325–32. Available from: <URL>.
  • 100. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim [Internet]. 2018 Mar 2;131(3):2027–39. Available from: <URL>.
  • 101. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Perumal V. Nanoparticle synthetic methods: strength and limitations. In: Nanoparticles in analytical and medical devices [Internet]. Elsevier; 2021. p. 31–43. Available from: <URL>.
  • 102. Tharchanaa SB, Priyanka K, Preethi K, Shanmugavelayutham G. Facile synthesis of Cu and CuO nanoparticles from copper scrap using plasma arc discharge method and evaluation of antibacterial activity. Mater Technol [Internet]. 2021 Jan 28;36(2):97–104. Available from: <URL>.
  • 103. Haider A, Kang IK. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review. Adv Mater Sci Eng [Internet]. 2015 Jan 1;2015(1):65257. Available from: <URL>.
  • 104. Corbella C, Portal S, Zolotukhin DB, Martinez L, Lin L, Kundrapu MN, et al. Pulsed anodic arc discharge for the synthesis of carbon nanomaterials. Plasma Sources Sci Technol [Internet]. 2019 Apr 29;28(4):045016. Available from: <URL>.
  • 105. Corbella C, Portal S, Rao J, Kundrapu MN, Keidar M. Tracking nanoparticle growth in pulsed carbon arc discharge. J Appl Phys [Internet]. 2020 Jun 28;127(24):243301. Available from: <URL>.
  • 106. Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, et al. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B [Internet]. 2021 Aug 25;9(33):6553–75. Available from: <URL>.
  • 107. Chaitoglou S, Sanaee MR, Aguiló-Aguayo N, Bertran E. Arc‐Discharge synthesis of iron encapsulated in carbon nanoparticles for biomedical applications. Soni A, editor. J Nanomater [Internet]. 2014 Jan 13;2014(1):178524. Available from: <URL>.
  • 108. Koushika EM, Shanmugavelayutham G, Saravanan P, Balasubramanian C. Rapid synthesis of nano-magnetite by thermal plasma route and its magnetic properties. Mater Manuf Process [Internet]. 2018 Nov 18;33(15):1701–7. Available from: <URL>.
  • 109. Lee S, Kim TH, Kim DW, Park DW. Preparation of silicon nanopowder by recycling silicon wafer waste in radio-frequency thermal plasma process. Plasma Chem Plasma Process [Internet]. 2017 Jul 27;37(4):967–78. Available from: <URL>.
  • 110. Luo F, Tang Z, Xiao S, Xiang Y. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol [Internet]. 2019 Jul 29;34(9):525–33. Available from: <URL>.
  • 111. Corbella C, Portal S, Kundrapu MN, Keidar M. Nanosynthesis by atmospheric arc discharges excited with pulsed-DC power: A review. Nanotechnology [Internet]. 2022 Aug 20;33(34):342001. Available from: <URL>.
  • 112. Zhang D, Ye K, Yao Y, Liang F, Qu T, Ma W, et al. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon N Y [Internet]. 2019 Feb 1;142:278–84. Available from: <URL>.
  • 113. Putri AC, Anwar M, Iftadi I, Ramelan A, Adrianto F, Saraswati TE. Plasma characteristics of under-water arc discharge in nanoparticle fabrication. J Electr Electron Information, Commun Technol [Internet]. 2022 May 30;4(1):11–5. Available from: <URL>.
  • 114. Borand G, Akçamlı N, Uzunsoy D. Structural characterization of graphene nanostructures produced via arc discharge method. Ceram Int [Internet]. 2021 Mar 15;47(6):8044–52. Available from: <URL>.
  • 115. Wang C, Sun L, Sun Q, Zhang Z, Xia W, Xia W. Experimental observations of constricted and diffuse anode attachment in a magnetically rotating arc at atmospheric pressure. Plasma Chem Plasma Process [Internet]. 2019 Mar 21;39(2):407–21. Available from: <URL>.
  • 116. Rane AV, Kanny K, Abitha VK, Thomas S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials [Internet]. Elsevier; 2018. p. 121–39. Available from: <URL>.
  • 117. Ghribi F, El Mir L, Omri K, Djessas K. Sputtered ZnS thin film from nanoparticles synthesized by hydrothermal route. Optik [Internet]. 2016 Apr 1;127(7):3688–92. Available from: <URL>.
  • 118. Shahidi S, Dalalsharifi S, Ghoranneviss M, Mongkholrattanasit R. In situ deposition of magnetic nanoparticles on glass mat using plasma sputtering method. J Text Inst [Internet]. 2022 Mar 4;113(3):349–59. Available from: <URL>.
  • 119. Tulinski M, Jurczyk M. Nanomaterials Synthesis Methods. In: Metrology and standardization of nanotechnology [Internet]. Wiley; 2017. p. 75–98. Available from: <URL>.
  • 120. Nattah AM, Mohaisen AH. An overview of titanium oxide nanoparticles, chareacterisation, synthesis and potential applications. J Univ Babylon Eng Sci [Internet]. 2022;30(1):72–85. Available from: <URL>.
  • 121. Palmer RE, Cai R, Vernieres J. Synthesis without Solvents: The cluster (nanoparticle) beam route to catalysts and sensors. Acc Chem Res [Internet]. 2018 Sep 18;51(9):2296–304. Available from: <URL>.
  • 122. López-Lorente AI, Picca RA, Izquierdo J, Kranz C, Mizaikoff B, Di Franco C, et al. Ion beam sputtering deposition of silver nanoparticles and TiOx/ZnO nanocomposites for use in surface enhanced vibrational spectroscopy (SERS and SEIRAS). Microchim Acta [Internet]. 2018 Feb 2;185(2):153. Available from: <URL>.
  • 123. Zhao Y, Zhang X, Chen X, Li W, Wang L, Li Z, et al. Preparation of Sn-NiO films and all-solid-state devices with enhanced electrochromic properties by magnetron sputtering method. Electrochim Acta [Internet]. 2021 Jan 20;367:137457. Available from: <URL>.
  • 124. Wang D, Qu Z, Wang Y, Cheng E, Wang Q. Role of Cu-doping concentration in the synthesis, microstructure and properties of Ag thin films via magnetron co-sputtering method. Vacuum [Internet]. 2023 Oct 1;216:112437. Available from: <URL>.
  • 125. Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, et al. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environ Res [Internet]. 2022 May 1;207:112202. Available from: <URL>.
  • 126. Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, et al. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int J Mol Sci [Internet]. 2021 Jan 20;22(3):989. Available from: <URL>.
  • 127. Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, et al. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules [Internet]. 2021 Feb 5;26(4):844. Available from: <URL>.
  • 128. Razavi M, Salahinejad E, Fahmy M, Yazdimamaghani M, Vashaee D, Tayebi L. Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Green processes for nanotechnology [Internet]. Cham: Springer International Publishing; 2015. p. 207–35. Available from: <URL>.
  • 129. Mondal S, Hoang G, Manivasagan P, Moorthy MS, Kim HH, Vy Phan TT, et al. Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Mater Chem Phys [Internet]. 2019 Apr 15;228:344–56. Available from: <URL>.
  • 130. Waris A, Din M, Ali A, Ali M, Afridi S, Baset A, et al. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg Chem Commun [Internet]. 2021 Jan 1;123:108369. Available from: <URL>.
  • 131. Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, et al. Nanomicrobiology: Emerging trends in microbial synthesis of nanomaterials and their applications. J Clust Sci [Internet]. 2023 Mar 4;34(2):639–64. Available from: <URL>.
  • 132. Lateef A, Elegbede JA, Akinola PO, Ajayi VA. Biomedical applications of green synthesized-metallic nanoparticles: A review. Pan African J Life Sci [Internet]. 2019 Nov 1;3(1):157–82. Available from: <URL>.
  • 133. Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO. Plant extracts mediated metal-based nanoparticles: Synthesis and biological applications. Biomolecules [Internet]. 2022 Apr 24;12(5):627. Available from: <URL>.
  • 134. Katata-Seru L, Moremedi T, Aremu OS, Bahadur I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq [Internet]. 2018 Apr 15;256:296–304. Available from: <URL>.
  • 135. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, et al. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology [Internet]. 2022 Jun 15;16(4):115–44. Available from: <URL>.
  • 136. Aisida SO, Akpa PA, Ahmad I, Zhao T kai, Maaza M, Ezema FI. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur Polym J [Internet]. 2020 Jan 5;122:109371. Available from: <URL>.
  • 137. Nayak V, Singh KR, Verma R, Pandey MD, Singh J, Pratap Singh R. Recent advancements of biogenic iron nanoparticles in cancer theranostics. Mater Lett [Internet]. 2022 Apr 15;313:131769. Available from: <URL>.
  • 138. Menazea AA, Ismail AM, Awwad NS, Ibrahium HA. Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J Mater Res Technol [Internet]. 2020 Sep 1;9(5):9598–606. Available from: <URL>.
  • 139. Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Mater Sci Eng R Reports [Internet]. 2019 Jul 1;137:66–105. Available from: <URL>.
  • 140. Aremu OS, Qwebani-Ogunleye T, Katata-Seru L, Mkhize Z, Trant JF. Synergistic broad-spectrum antibacterial activity of Hypoxis hemerocallidea-derived silver nanoparticles and streptomycin against respiratory pathobionts. Sci Rep [Internet]. 2021 Jul 27;11(1):15222. Available from: <URL>.
  • 141. von Baeckmann C, Guillet-Nicolas R, Renfer D, Kählig H, Kleitz F. A Toolbox for the synthesis of multifunctionalized mesoporous silica nanoparticles for biomedical applications. ACS Omega [Internet]. 2018 Dec 31;3(12):17496–510. Available from: <URL>.
  • 142. Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small [Internet]. 2017 Feb 16;13(5):1602660. Available from: <URL>.
  • 143. Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, et al. Synthesis of silver nanoparticles and their biomedical applications - A comprehensive review. Curr Pharm Des [Internet]. 2019 Oct 3;25(24):2650–60. Available from: <URL>.
  • 144. Mirzaei H, Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int [Internet]. 2017 Jan 1;43(1):907–14. Available from: <URL>.
  • 145. Cardoso VF, Francesko A, Ribeiro C, Bañobre‐López M, Martins P, Lanceros‐Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater [Internet]. 2018 Mar 27;7(5):1700845. Available from: <URL>.
  • 146. Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega [Internet]. 2022 Aug 9;7(31):27004–20. Available from: <URL>.
  • 147. Ganapathe LS, Mohamed MA, Mohamad Yunus R, Berhanuddin DD. Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. magnetochemistry [Internet]. 2020 Dec 3;6(4):68. Available from: <URL>.
  • 148. Verma R, Pathak S, Srivastava AK, Prawer S, Tomljenovic-Hanic S. ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J Alloys Compd [Internet]. 2021 Sep 25;876:160175. Available from: <URL>.
  • 149. Kalpana VN, Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl [Internet]. 2018 Aug 1;2018(1):569758. Available from: <URL>.
  • 150. Tran T Van, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DVN. Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ Chem Lett [Internet]. 2022 Apr 8;20(2):1309–31. Available from: <URL>.
  • 151. Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med [Internet]. 2017 Jun 11;28(6):92. Available from: <URL>.
  • 152. Zhu S, Gong L, Xie J, Gu Z, Zhao Y. Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods [Internet]. 2017 Dec 20;1(12):1700220. Available from: <URL>.
  • 153. Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, et al. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale [Internet]. 2022 Feb 17;14(7):2534–71. Available from: <URL>.
  • 154. Andrade RGD, Veloso SRS, Castanheira EMS. Shape anisotropic iron oxide-based magnetic nanoparticles: Synthesis and biomedical applications. Int J Mol Sci [Internet]. 2020 Apr 1;21(7):2455. Available from: <URL>.
  • 155. Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, et al. Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum Marianum for diverse biomedical applications. Nanomedicine [Internet]. 2019 Mar 4;14(6):655–73. Available from: <URL>.
  • 156. Li R, Liu Y, Seidi F, Deng C, Liang F, Xiao H. Design and construction of fluorescent cellulose nanocrystals for biomedical applications. Adv Mater Interfaces [Internet]. 2022 Apr 6;9(11):2101293. Available from: <URL>.
  • 157. Ahmad B, Hafeez N, Bashir S, Rauf A, Mujeeb-ur-Rehman. Phytofabricated gold nanoparticles and their biomedical applications. Biomed Pharmacother [Internet]. 2017 May 1;89:414–25. Available from: <URL>.
  • 158. Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater [Internet]. 2018 Feb;7(4):1700831. Available from: <URL>.
  • 159. Rajivgandhi G, Mythili Gnanamangai B, Heela Prabha T, Poornima S, Maruthupandy M, Alharbi NS, et al. Biosynthesized zinc oxide nanoparticles (ZnO NPs) using actinomycetes enhance the anti-bacterial efficacy against K. Pneumoniae. J King Saud Univ - Sci [Internet]. 2022 Jan 1;34(1):101731. Available from: <URL>.
  • 160. Undabarrena A, Ugalde JA, Seeger M, Cámara B. ­Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ [Internet]. 2017 Feb 14;5(2):e2912. Available from: <URL>.
  • 161. AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AEZMA, Husseiny SM. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci [Internet]. 2017 Jan 1;24(1):208–16. Available from: <URL>.
  • 162. Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology [Internet]. 2021 May 29;19(1):159. Available from: <URL>.
  • 163. Willem de Vries J, Schnichels S, Hurst J, Strudel L, Gruszka A, Kwak M, et al. DNA nanoparticles for ophthalmic drug delivery. Biomaterials [Internet]. 2018 Mar 1;157:98–106. Available from: <URL>.
  • 164. Talebi S, Ramezani F, Ramezani M. Biosythesis of metal nanoparticles by microorganism. Nanocon [Internet]. 2010;10:12–4. Available from: <URL>.
  • 165. Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, et al. Smart Superstructures with Ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano [Internet]. 2016 Jul 26;10(7):6753–61. Available from: <URL>.
  • 166. Chowdhury NK, Choudhury R, Gogoi B, Chang CM, Pandey RP. Microbial synthesis of gold nanoparticles and their application. Curr Drug Targets [Internet]. 2022 Jul 28;23(7):752–60. Available from: <URL>.
  • 167. Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol [Internet]. 2019 Apr 18;103(7):2913–35. Available from: <URL>.
  • 168. Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv [Internet]. 2019 Apr 26;9(23):12944–67. Available from: <URL>.
  • 169. De Matteis V, Cascione M, Toma CC, Leporatti S. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials [Internet]. 2018 May 10;8(5):319. Available from: <URL>.
  • 170. Sagadevan S, Lett JA, Fatimah I, Lokanathan Y, Léonard E, Oh WC, et al. Current trends in the green syntheses of tin oxide nanoparticles and their biomedical applications. Mater Res Express [Internet]. 2021 Aug 1;8(8):082001. Available from: <URL>.
  • 171. Kiani BH, Haq I ul, Alhodaib A, Basheer S, Fatima H, Naz I, et al. Comparative evaluation of biomedical applications of zinc nanoparticles synthesized by using Withania somnifera plant extracts. Plants [Internet]. 2022 Jun 7;11(12):1525. Available from: <URL>.
  • 172. Khan S, Ul-Islam M, Ullah MW, Zhu Y, Narayanan KB, Han SS, et al. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int J Biol Macromol [Internet]. 2022 Jun 1;209:9–30. Available from: <URL>.
  • 173. Asad S, Anwar N, Shah M, Anwar Z, Arif M, Rauf M, et al. Biological synthesis of silver nanoparticles by Amaryllis vittata (L.) Herit: From antimicrobial to biomedical applications. Materials [Internet]. 2022 Aug 9;15(16):5478. Available from: <URL>.
  • 174. Poudel DK, Niraula P, Aryal H, Budhathoki B, Phuyal S, Marahatha R, et al. Plant-mediated green synthesis of Ag NPs and their possible applications: A critical review. Kumar B, editor. J Nanotechnol [Internet]. 2022 Mar 16;2022(1):779237. Available from: <URL>.
  • 175. Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran T Bin, et al. Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ - Sci [Internet]. 2022 Apr 1;34(3):101869. Available from: <URL>.
  • 176. Kiani BH, Ikram F, Fatima H, Alhodaib A, Haq I ul, Ur-Rehman T, et al. Comparative evaluation of biomedical and phytochemical applications of zinc nanoparticles by using Fagonia cretica extracts. Sci Rep [Internet]. 2022 Jun 15;12(1):10024. Available from: <URL>.
  • 177. Danish MSS, Estrella-Pajulas LL, Alemaida IM, Grilli ML, Mikhaylov A, Senjyu T. Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals [Internet]. 2022 Apr 29;12(5):769. Available from: <URL>.
  • 178. Nahari MH, Al Ali A, Asiri A, Mahnashi MH, Shaikh IA, Shettar AK, et al. Green synthesis and characterization of ıron nanoparticles synthesized from aqueous leaf extract of Vitex leucoxylon and ıts biomedical applications. Nanomaterials [Internet]. 2022 Jul 14;12(14):2404. Available from: <URL>.
  • 179. Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res [Internet]. 2017 May 4;16(4):743–53. Available from: <URL>.
  • 180. Khan SA, Lee CS. Green Biological synthesis of nanoparticles and their biomedical applications. In: Nanotechnology in the life sciences [Internet]. Springer, Cham; 2020. p. 247–80. Available from: <URL>.
  • 181. Soni M, Mehta P, Soni A, Goswami GK. Green nanoparticles: Synthesis and applications. IOSR J Biotechnol Biochem [Internet]. 2018;4(3):78–83. Available from: <URL>.
  • 182. Khan T, Ullah N, Khan MA, Mashwani Z ur R, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci [Internet]. 2019 Oct 1;272:102017. Available from: <URL>.
  • 183. Happy Agarwal, Soumya Menon, Venkat Kumar S, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact [Internet]. 2018 Apr 25;286:60–70. Available from: <URL>.
  • 184. Kigozi M, Ezealigo BN, Onwualu AP, Dzade NY. Hydrothermal synthesis of metal oxide composite cathode materials for high energy application. In: Chemically deposited nanocrystalline metal oxide thin films [Internet]. Cham: Springer International Publishing; 2021. p. 489–508. Available from: <URL>.
  • 185. Hu J, Li H, Muhammad S, Wu Q, Zhao Y, Jiao Q. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. J Solid State Chem [Internet]. 2017 Sep 1;253:113–20. Available from: <URL>.
  • 186. Malekshahi Byranvand M, Kharat AN, Fatholahi L, Malekshahi Beiranvand Z. A Review on synthesis of Nano-TiO2 via different methods. J Nanostructures [Internet]. 2013;3:1–9. Available from: <URL>.
  • 187. Bulcha B, Leta Tesfaye J, Anatol D, Shanmugam R, Dwarampudi LP, Nagaprasad N, et al. Synthesis of zinc oxide nanoparticles by hydrothermal methods and spectroscopic ınvestigation of ultraviolet radiation protective properties. R L, editor. J Nanomater [Internet]. 2021 Sep 22;2021(1):617290. Available from: <URL>.
  • 188. Jubeer EM, Manthrammel MA, Subha PA, Shkir M, Biju KP, AlFaify SA. Defect engineering for enhanced optical and photocatalytic properties of ZnS nanoparticles synthesized by hydrothermal method. Sci Rep [Internet]. 2023 Oct 5;13(1):16820. Available from: <URL>.
  • 189. Chen N, Liu B, Zhang P, Wang C, Du Y, Chang W, et al. Enhanced photocatalytic performance of Ce-doped SnO2 hollow spheres by a one-pot hydrothermal method. Inorg Chem Commun [Internet]. 2021 Oct 1;132:108848. Available from: <URL>.
  • 190. Khan S, Usman M, Abdullah M, Suleman Waheed M, Faheem Ashiq M, Ishfaq Ahmad M, et al. Facile synthesis of CuAl2O4/rGO nanocomposite via the hydrothermal method for supercapacitor applications. Fuel [Internet]. 2024 Feb 1;357:129688. Available from: <URL>.
  • 191. Soares CPP, Baptista R de L, Cesar DV. Solvothermal reduction of graphite oxide using alcohols. Mater Res [Internet]. 2017 Dec 18;21(1):e20170726. Available from: <URL>.
  • 192. Yuan R, Wen H, Zeng L, Li X, Liu X, Zhang C. Supercritical CO2 assisted solvothermal preparation of CoO/Graphene nanocomposites for high performance lithium-ion batteries. Nanomaterials [Internet]. 2021 Mar 10;11(3):694. Available from: <URL>.
  • 193. Perumal S, Monikandaprabu K, Sambandam CG, Mohamed AP. Synthesis and characterization studies of solvothermally synthesized undoped and Ag-doped TiO2 nanoparticles using toluene as a solvent. J Eng Res Appl [Internet]. 2014;4(7):184–7. Available from: <URL>.
  • 194. Uematsu T, Baba M, Oshima Y, Tsuda T, Torimoto T, Kuwabata S. Atomic resolution ımaging of gold nanoparticle generation and growth in ıonic liquids. J Am Chem Soc [Internet]. 2014 Oct 1;136(39):13789–97. Available from: <URL>.
  • 195. Kløve M, Philippot G, Auxéméry A, Aymonier C, Iversen BB. Stabilizing tetragonal ZrO2 nanocrystallites in solvothermal synthesis. Nanoscale [Internet]. 2024 Feb 8;16(6):3185–90. Available from: <URL>.
  • 196. Zhang L, Feng L, Li P, Chen X, Jiang J, Zhang S, et al. Direct Z-scheme photocatalyst of hollow CoSx@CdS polyhedron constructed by ZIF-67-templated one-pot solvothermal route: A signal-on photoelectrochemical sensor for mercury(II). Chem Eng J [Internet]. 2020 Sep 1;395:125072. Available from: <URL>.
  • 197. Revathi J, Abel MJ, Archana V, Sumithra T, Thiruneelakandan R, Joseph prince J. Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Phys B Condens Matter [Internet]. 2020 Jun 15;587:412136. Available from: <URL>.
  • 198. Pu S, Xue S, Yang Z, Hou Y, Zhu R, Chu W. In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies. Environ Sci Pollut Res [Internet]. 2018 Jun 13;25(18):17310–20. Available from: <URL>.
  • 199. Priyadharshini P, Shobika PA, Monisha P, Gomathi SS, Pushpanathan K. Nickel ferrite magnetic nanoparticles: evidence for superparamagnetism in smaller size particles. J Aust Ceram Soc [Internet]. 2022 Dec 5;58(5):1455–80. Available from: <URL>.
  • 200. Arya S, Mahajan P, Mahajan S, Khosla A, Datt R, Gupta V, et al. Review—influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J Solid State Sci Technol [Internet]. 2021 Feb 1;10(2):023002. Available from: <URL>.
  • 201. Tadic M, Panjan M, Tadic BV, Lazovic J, Damnjanovic V, Kopani M, et al. Magnetic properties of hematite (α−Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. J Electr Eng [Internet]. 2019 Dec 1;70(7):71–6. Available from: <URL>.
  • 202. Youssef F, Farghaly U, Abd El-Baky RM, Waly N. Comparative study of antibacterial effects of titanium dioxide nanoparticles alone and in combination with antibiotics on MDR Pseudomonas aeruginosa Strains. Int J Nanomedicine [Internet]. 2020 May;Volume 15:3393–404. Available from: <URL>.
  • 203. Arkaban H, Khajeh Ebrahimi A, Yarahmadi A, Zarrintaj P, Barani M. Development of a multifunctional system based on CoFe2O4 @polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology [Internet]. 2021 Jul 23;32(30):305101. Available from: <URL>.
  • 204. Liu J, Guo C, Zhang Y. Research of crystal changing of barium hexaferrite prepared by citric acid sol–gel method. Funct Mater Lett [Internet]. 2017 Apr 3;10(02):1750001. Available from: <URL>.
  • 205. Zakir R, Iqbal SS, Rehman AU, Nosheen S, Ahmad TS, Ehsan N, et al. Spectral, electrical, and dielectric characterization of Ce-doped Co-Mg-Cd spinel nano-ferrites synthesized by the sol-gel auto combustion method. Ceram Int [Internet]. 2021 Oct 15;47(20):28575–83. Available from: <URL>.
  • 206. Suneetha RB, Selvi P, Vedhi C. Synthesis, structural and electrochemical characterization of Zn doped iron oxide/grapheneoxide/chitosan nanocomposite for supercapacitor application. Vacuum [Internet]. 2019 Jun 1;164:396–404. Available from: <URL>.
  • 207. Zeng X, Teng J, Yu J gang, Tan A shuang, Fu D fa, Zhang H. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. Int J Miner Metall Mater [Internet]. 2018 Jan 3;25(1):102–9. Available from: <URL>.
  • 208. Nawaz M, Moztahida M, Kim J, Shahzad A, Jang J, Miran W, et al. Photodegradation of microcystin-LR using graphene-TiO2/sodium alginate aerogels. Carbohydr Polym [Internet]. 2018 Nov 1;199:109–18. Available from: <URL>.
  • 209. Hong YL, Liu Z, Wang L, Zhou T, Ma W, Xu C, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science [Internet]. 2020 Aug 7;369(6504):670–4. Available from: <URL>.
  • 210. Xu S, Zhang L, Wang B, Ruoff RS. Chemical vapor deposition of graphene on thin-metal films. Cell Reports Phys Sci [Internet]. 2021 Mar 24;2(3):100372. Available from: <URL>.
  • 211. Wu Y, Zhao Z, Sun C, Ji C, Zhang Y, Qu R, et al. In-situ synthesis of PPTA nanomaterials in PS matrix and their enhanced performances in PS-based nanocomposite. Eur Polym J [Internet]. 2022 Oct 5;179:111535. Available from: <URL>.
  • 212. Suba A, Selvarajan P, Jebaraj Devadasan J. Rubidium chloride doped magnesium oxide nanomaterial by using green synthesis and its characterization. Chem Phys Lett [Internet]. 2022 Apr 16;793:139463. Available from: <URL>.
  • 213. Amparo SZS do, Vasconcelos CKB de, Almeida AIAR, Sena LEB, Lima MCFS, Medeiros FS, et al. Microwave-assisted synthesis of PAM preformed particle gels reinforced with carbon nanomaterials for conformance control in oil recovery. Fuel [Internet]. 2022 Dec 15;330:125650. Available from: <URL>.
  • 214. Zhang J, Tian X, Cui X, Zheng A, Li J, Bai Y, et al. Facile synthesis of hyperbranched magnetic nanomaterials for selective adsorption of proteins. Talanta [Internet]. 2023 Jan 15;252:123895. Available from: <URL>.
  • 215. Hammond OS, Mudring AV. Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials. Chem Commun [Internet]. 2022 Mar 22;58(24):3865–92. Available from: <URL>.
  • 216. Siwal SS, Sheoran K, Mishra K, Kaur H, Saini AK, Saini V, et al. Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere [Internet]. 2022 Apr 1;293:133542. Available from: <URL>.
  • 217. Shingdilwar S, Kumar D, Sahu B, Banerjee S. Straightforward synthesis of multifunctional porous polymer nanomaterials for CO2 capture and removal of contaminants. Polym Chem [Internet]. 2022 Apr 12;13(15):2165–72. Available from: <URL>.
  • 218. Fu Y, Li Z, Hu C, Li Q, Chen Z. Synthesis of carbon dots-based covalent organic nanomaterial as stationary phase for open tubular capillary electrochromatography. J Chromatogr A [Internet]. 2022 Aug 16;1678:463343. Available from: <URL>.
  • 219. Li Q, Cui Y, Lin J, Zhao C, Ding L. Synthesis of carbon microsphere-assisted snowflake-like ZnO nanomaterials for selective detection of NO2 at room temperature. J Ind Eng Chem [Internet]. 2022 Jun 25;110:542–51. Available from: <URL>.
  • 220. Hussain SA, Ali S, Islam ZU, Khan M. Low-temperature synthesis of graphite flakes and carbon-based nanomaterials from banana peels using hydrothermal process for photoelectrochemical water-splitting. Phys E Low-dimensional Syst Nanostructures [Internet]. 2022 Jul 1;141:115231. Available from: <URL>.
  • 221. Li Q, Huang N, Cui Y, Lin J, Zhao C, Ding L. Synthesis of porous rod-like In2O3 nanomaterials and its selective detection of NO at room temperature. J Alloys Compd [Internet]. 2022 May 5;902:163632. Available from: <URL>.
  • 222. Wang BB, Zhong XX, Zhu J, Wang Y, Zhang Y, Cvelbar U, et al. Single-step synthesis of TiO2/WO3− hybrid nanomaterials in ethanoic acid: Structure and photoluminescence properties. Appl Surf Sci [Internet]. 2021 Oct 1;562:150180. Available from: <URL>.
  • 223. Mohan V V., Anjana PM, Rakhi RB. One pot synthesis of tungsten oxide nanomaterial and application in the field of flexible symmetric supercapacitor energy storage device. Mater Today Proc [Internet]. 2022 Jan 1;62:848–51. Available from: <URL>.
  • 224. Xu H, Liu C, Srinivasakannan C, Chen M, Wang Q, Li L, et al. Hydrothermal synthesis of one-dimensional α-MoO3 nanomaterials and its unique sensing mechanism for ethanol. Arab J Chem [Internet]. 2022 Sep 1;15(9):104083. Available from: <URL>.
  • 225. Sehrawat P, Malik RK, Punia R, Maken S, Kumari N. Ecofriendly synthesis and white light-emitting properties of BaLa2ZnO5:Dy3+ nanomaterials for lighting application in NUV-WLEDs and solar cells. Chem Phys Lett [Internet]. 2022 Apr 1;792:139399. Available from: <URL>.
  • 226. Najahi Mohammadizadeh Z, Hamidinasab M, Ahadi N, Bodaghifard MA. A novel hybrid organic-ınorganic nanomaterial: Preparation, characterization and application in synthesis of diverse heterocycles. Polycycl Aromat Compd [Internet]. 2022 Apr 21;42(4):1282–301. Available from: <URL>.
  • 227. Khan MJ, Tahir K, El-Zahhar AA, Arooj A, AL-Abdulkarim HA, Saleh EAM, et al. Facile synthesis of silver modified zinc oxide nanocomposite: An efficient visible light active nanomaterial for bacterial inhibition and dye degradation. Photodiagnosis Photodyn Ther [Internet]. 2021 Dec 1;36:102619. Available from: <URL>.
  • 228. Chowdhury A, Kumari S, Khan AA, Hussain S. Synthesis of mixed phase crystalline CoNi2S4 nanomaterial and selective mechanism for adsorption of Congo red from aqueous solution. J Environ Chem Eng [Internet]. 2021 Dec 1;9(6):106554. Available from: <URL>.
  • 229. Jarariya R, Suresh K. Spinel ferrite nanomaterials - MgFe2O4 - Synthesis by appropriate microwave solution combustion (Msc) method of visible light–responsive photocatalyst for Rb21 dye degradation. Mater Today Proc [Internet]. 2023 Jan 1;72:2618–29. Available from: <URL>.
  • 230. Liu H, Zhu Y, Ma J, Chen C, Cheng P, Zhang S. Hydrothermal synthesis of Pd-doped CeO2 nanomaterials and electrochemical detection for phenol. J Cryst Growth [Internet]. 2022 May 15;586:126626. Available from: <URL>.
  • 231. Sehrawat P, Malik RK, Punia R, Sheoran M, Singh S, Kumar M. New Ba2YAlO5:Dy3+ nanomaterials for WLEDs: Propellant combustion synthesis and photometric features for enhanced emission of cool-white light under NUV excitation. Chem Phys Lett [Internet]. 2021 Oct 16;781:138985. Available from: <URL>.
  • 232. Vijay R, Drisya VM, Selta DRF, Rathi MA, Gopalakrishnan V, Alkhalifah DHM, et al. Synthesis and characterization of silver nanomaterial from aqueous extract of Commelina forskaolii and its potential antimicrobial activity against Gram negative pathogens. J King Saud Univ - Sci [Internet]. 2023 Jan 1;35(1):102373. Available from: <URL>.
  • 233. Acauan LH, Kaiser AL, Wardle BL. Direct synthesis of carbon nanomaterials via surface activation of bulk copper. Carbon N Y [Internet]. 2021 Jun 15;177:1–10. Available from: <URL>.
  • 234. Zaikovskii A, Yudin I, Kozlachkov D, Nartova A, Fedorovskaya E. Gas pressure control of electric arc synthesis of composite Sn–SnO2–C nanomaterials. Vacuum [Internet]. 2022 Jan 1;195:110694. Available from: <URL>.
  • 235. Singh N, Kalbande PN, Umbarkar S, Sudarsanam P. Efficient cascade C-N coupling reactions catalyzed by a recyclable MoOx/Nb2O5 nanomaterial for valuable N-heterocycles synthesis. Mol Catal [Internet]. 2022 Nov 1;532:112742. Available from: <URL>.
  • 236. Sahoo SK, Panigrahi GK, Sahu MK, Arzoo A, Sahoo JK, Sahoo A, et al. Biological synthesis of GO-MgO nanomaterial using Azadirachta indica leaf extract: A potential bio-adsorbent for removing Cr(VI) ions from aqueous media. Biochem Eng J [Internet]. 2022 Jan 1;177:108272. Available from: <URL>.
  • 237. Sharma SK, Sharma G, Sharma A, Bhardwaj K, Preeti K, Singh K, et al. Synthesis of silica and carbon-based nanomaterials from rice husk ash by ambient fiery and furnace sweltering using a chemical method. Appl Surf Sci Adv [Internet]. 2022 Apr 1;8:100225. Available from: <URL>.
  • 238. Rajangam K, Amuthameena S, Thangavel S, Sanjanadevi VS, Balraj B. Synthesis and characterisation of Ag incorporated TiO2 nanomaterials for supercapacitor applications. J Mol Struct [Internet]. 2020 Nov 5;1219:128661. Available from: <URL>.
  • 239. Govindaraju K, Anand KV, Anbarasu S, Theerthagiri J, Revathy S, Krupakar P, et al. Seaweed (Turbinaria ornata)-assisted green synthesis of magnesium hydroxide [Mg(OH)2] nanomaterials and their anti-mycobacterial activity. Mater Chem Phys [Internet]. 2020 Jan 1;239:122007. Available from: <URL>.
  • 240. Khan MD, Aamir M, Akhtar J, Malik MA, Revaprasadu N. Metal selenobenzoate complexes: Novel single source precursors for the synthesis of metal selenide semiconductor nanomaterials. Mater Today Proc [Internet]. 2019 Jan 1;10:66–74. Available from: <URL>.
  • 241. Liu PR, Yang ZY, Hong Y, Hou YL. An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. Algal Res [Internet]. 2018 Apr 1;31:173–82. Available from: <URL>.
  • 242. Kaynar UH, Çam Kaynar S, Ekdal Karali E, Ayvacıkli M, Can N. Adsorption of thorium(IV) ions by metal ion doped ZnO nanomaterial prepared with combustion synthesis: Empirical modelling and process optimization by response surface methodology (RSM). Appl Radiat Isot [Internet]. 2021 Dec 1;178:109955. Available from: <URL>.
  • 243. Li X, Zhang F, Zhai B, Wang X, Zhao J, Wang Z. Facile synthesis of porous anatase TiO2 nanomaterials with the assistance of biomass resource for lithium ion batteries with high-rate performance. J Phys Chem Solids [Internet]. 2020 Oct 1;145:109552. Available from: <URL>.
  • 244. Sinha S, Kr. Aman A, Kr. Singh R, Kr N, Shivani K. Calcium oxide(CaO) nanomaterial (Kukutanda twak Bhasma) from egg shell: Green synthesis, physical properties and antimicrobial behaviour. Mater Today Proc [Internet]. 2021 Jan 1;43:3414–9. Available from: <URL>.
  • 245. Abdullah, Hussain T, Faisal S, Rizwan M, Saira, Zaman N, et al. Green synthesis and characterization of copper and nickel hybrid nanomaterials: Investigation of their biological and photocatalytic potential for the removal of organic crystal violet dye. J Saudi Chem Soc [Internet]. 2022 Jul 1;26(4):101486. Available from: <URL>.
  • 246. Tigwere GA, Khan MD, Nyamen LD, Aboud AA, Moyo T, Dlamini ST, et al. Molecular precursor route for the phase selective synthesis of α-MnS or metastable γ-MnS nanomaterials for magnetic studies and deposition of thin films by AACVD. Mater Sci Semicond Process [Internet]. 2022 Mar 1;139:106330. Available from: <URL>.
  • 247. Vasudha M, Khan AA, Bhumika KM, Gayathri D, Nagaswarupa HP, Shashi shekhar TR, et al. Facile chemical synthesis of Ca3MgAl10O17 nanomaterials for photocatalytic and non-enzymatic sensor applications. Sensors Int [Internet]. 2021 Jan 1;2:100082. Available from: <URL>.
  • 248. Köksoy B, Akyüz D, Şenocak A, Durmuş M, Demirbaş E. Novel SWCNT-hybrid nanomaterial functionalized with subphthalocyanine substituted asymmetrical zinc (II) phthalocyanine conjugate: Design, synthesis, characterization and sensor properties for pesticides. Sensors Actuators B Chem [Internet]. 2021 Feb 15;329:129198. Available from: <URL>.
  • 249. Dinh VP, Tran NQ, Le NQT, Tran QH, Nguyen TD, Le VT. Facile synthesis of FeFe2O4 magnetic nanomaterial for removing methylene blue from aqueous solution. Prog Nat Sci Mater Int [Internet]. 2019 Dec 1;29(6):648–54. Available from: <URL>.
  • 250. Velázquez-Hernández I, Estévez M, Vergara-Castañeda H, Guerra-Balcázar M, Álvarez-Contreras L, Luna-Bárcenas G, et al. Synthesis and application of biogenic gold nanomaterials with {100} facets for crude glycerol electro-oxidation. Fuel [Internet]. 2020 Nov 1;279:118505. Available from: <URL>.
  • 251. Bayan EM, Lupeiko TG, Pustovaya LE, Volkova MG, Butova VV, Guda AA. Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. J Alloys Compd [Internet]. 2020 May 5;822:153662. Available from: <URL>.
  • 252. Chandrappa M, Swathi K, Girish Kumar S, Pullela PK. Nanomaterial assisted bulk scale synthesis of 2-methyl-6-nitroquinoline. Mater Today Proc [Internet]. 2021 Jan 1;37(Part 2):1469–74. Available from: <URL>.
  • 253. Zhang Y, Chen Y, Kang ZW, Gao X, Zeng X, Liu M, et al. Waste eggshell membrane-assisted synthesis of magnetic CuFe2O4 nanomaterials with multifunctional properties (adsorptive, catalytic, antibacterial) for water remediation. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021 Mar 5;612:125874. Available from: <URL>.
  • 254. Uppal H, Chawla S, Joshi AG, Haranath D, Vijayan N, Singh N. Facile chemical synthesis and novel application of zinc oxysulfide nanomaterial for instant and superior adsorption of arsenic from water. J Clean Prod [Internet]. 2019 Jan 20;208:458–69. Available from: <URL>.
  • 255. Al-Anazi A, Abdelraheem WH, Scheckel K, Nadagouda MN, O’Shea K, Dionysiou DD. Novel franklinite-like synthetic zinc-ferrite redox nanomaterial: synthesis, and evaluation for degradation of diclofenac in water. Appl Catal B Environ [Internet]. 2020 Oct 15;275:119098. Available from: <URL>.
  • 256. Adimule V, Yallur BC, Challa M, Joshi RS. Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon [Internet]. 2021 Dec 1;7(12):e08541. Available from: <URL>.
  • 257. Bello IT, Adio SA, Oladipo AO, Adedokun O, Mathevula LE, Dhlamini MS. Molybdenum sulfide‐based supercapacitors: From synthetic, bibliometric, and qualitative perspectives. Int J Energy Res [Internet]. 2021 Jul 11;45(9):12665–92. Available from: <URL>.
Year 2024, Volume: 11 Issue: 4, 1329 - 1368, 03.12.2024
https://doi.org/10.18596/jotcsa.1389331

Abstract

Project Number

Nil

References

  • 1. Rupesh Kumar M, Ranjith S, Balu H, Bharathi DR, Chandan K, Ahmed SS. Role of nanotechnology in biomedical applications: an updated review. UPI J Pharm Med Heal Sci [Internet]. 2022 Nov 8;5(2):39–43. Available from: <URL>.
  • 2. Sadeghi-Aghbash M, Rahimnejad M. Zinc phosphate nanoparticles: A review on physical, chemical, and biological synthesis and their applications. Curr Pharm Biotechnol [Internet]. 2022 Aug 16;23(10):1228–44. Available from: <URL>.
  • 3. MubarakAli D, Kim H, Venkatesh PS, Kim JW, Lee SY. A systemic review on the synthesis, characterization, and applications of palladium nanoparticles in biomedicine. Appl Biochem Biotechnol [Internet]. 2023 Jun 29;195(6):3699–718. Available from: <URL>.
  • 4. Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials [Internet]. 2022 Jan 6;15(2):427. Available from: <URL>.
  • 5. Phan TTV, Huynh TC, Manivasagan P, Mondal S, Oh J. An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials [Internet]. 2019 Dec 27;10(1):66. Available from: <URL>.
  • 6. Pandey P. Role of Nanotechnology in Electronics: A review of recent developments and patents. Recent Pat Nanotechnol [Internet]. 2022 Mar 26;16(1):45–66. Available from: <URL>.
  • 7. Ajala OJ, Tijani JO, Bankole MT, Abdulkareem AS. Wastewater treatment technologies. In: Environmental footprints and eco-design of products and processes [Internet]. Springer, Singapore; 2022. p. 1–28. Available from: <URL>.
  • 8. Ajala OJ, Khadir A, Ighalo JO, Umenweke GC. Cellulose-based nano-biosorbents in water purification. In: Nano-biosorbents for decontamination of water, air, and soil pollution [Internet]. Elsevier; 2022. p. 395–415. Available from: <URL>.
  • 9. Ajala OJ, Nwosu FO, Ahmed RK. Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays. Appl Water Sci [Internet]. 2018 Nov 30;8(7):214. Available from: <URL>.
  • 10. Nwosu FO, Ajala OJ, Okeola FO, Adebayo SA, Olanlokun OK, Eletta AO. Adsorption of chlorotriazine herbicide onto unmodified and modified kaolinite: Equilibrium, kinetic and thermodynamic studies. Egypt J Aquat Res [Internet]. 2019 Jun 1;45(2):99–107. Available from: <URL>.
  • 11. Nwosu FO, Ajala OJ, Owoyemi RM, Raheem BG. Preparation and characterization of adsorbents derived from bentonite and kaolin clays. Appl Water Sci [Internet]. 2018 Nov 10;8(7):195. Available from: <URL>.
  • 12. Abdullahi A, Ighalo J, Ajala O, Ayika S. Physicochemical analysis and heavy metals remediation of pharmaceutical ındustry effluent using bentonite clay modified by H2SO4 and HCl. J Turkish Chem Soc Sect A Chem [Internet]. 2020 Oct 30;7(3):727–44. Available from: <URL>.
  • 13. Ighalo JO, Tijani IO, Ajala OJ, Ayandele FO, Eletta OAA, Adeniyi AG. Competitive biosorption of Pb(II) and Cu(II) by functionalised Micropogonias undulates scales. Recent Innov Chem Eng [Internet]. 2021 Jan 21;13(5):425–36. Available from: <URL>.
  • 14. Libralato G, Volpi Ghirardini A, Avezzù F. Toxicity removal efficiency of decentralised sequencing batch reactor and ultra-filtration membrane bioreactors. Water Res [Internet]. 2010 Aug 1;44(15):4437–50. Available from: <URL>.
  • 15. Verma N, Kumar N. Synthesis and Biomedical Applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater Sci Eng [Internet]. 2019 Mar 11;5(3):1170–88. Available from: <URL>.
  • 16. Song Y, Rampley CPN, Chen X, Du F, Thompson IP, Huang WE. Application of bacterial whole-cell biosensors in health. In: Handbook of cell biosensors [Internet]. Cham: Springer International Publishing; 2022. p. 945–61. Available from: <URL>.
  • 17. Shafiei F, Ashnagar A, Ghavami-Lahiji M, Najafi F, Amin Marashi SM. Evaluation of antibacterial properties of dental adhesives containing metal nanoparticles. J Dent Biomater [Internet]. 2018 Mar 4;5(1):510–9. Available from: <URL>.
  • 18. Ighalo JO, Sagboye PA, Umenweke G, Ajala OJ, Omoarukhe FO, Adeyanju CA, et al. CuO nanoparticles (CuO NPs) for water treatment: A review of recent advances. Environ Nanotechnology, Monit Manag [Internet]. 2021 May 1;15:100443. Available from: <URL>.
  • 19. Ali NH, Amin MCIM, Ng SF. Sodium carboxymethyl cellulose hydrogels containing reduced graphene oxide (rGO) as a functional antibiofilm wound dressing. J Biomater Sci Polym Ed [Internet]. 2019 May 24;30(8):629–45. Available from: <URL>.
  • 20. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2018 Oct 31;46(sup1):1210–20. Available from: <URL>.
  • 21. Su M, Zhang T, Su J, Wang Z, Hu Y, Gao Y, et al. Homogeneous ZnO nanowire arrays p-n junction for blue light-emitting diode applications. Opt Express [Internet]. 2019 Aug 5;27(16):A1207–15. Available from: <URL>.
  • 22. Nayyar A, Puri V, Le DN. Internet of nano things (IoNT): Next evolutionary step in nanotechnology. nanosci nanotechnol [Internet]. 2017;7(1):4–8. Available from: <URL>.
  • 23. Hamza EK, Jaafar SN. Nanotechnology application for wireless communication system. In: Materials horizons: From nature to nanomaterials [Internet]. Springer, Singapore; 2022. p. 115–30. Available from: <URL>.
  • 24. Ajala OJ, Tijani JO, Bankole MT, Abdulkareem AS. A critical review on graphene oxide nanostructured material: Properties, synthesis, characterization and application in water and wastewater treatment. Environ Nanotechnology, Monit Manag [Internet]. 2022 Dec 1;18:100673. Available from: <URL>.
  • 25. Rawtani D, Khatri N, Tyagi S, Pandey G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manage [Internet]. 2018 Jan 15;206:749–62. Available from: <URL>.
  • 26. Li H, Zhu Y. Liquid‐Phase synthesis of iron oxide nanostructured materials and their applications. Chem – A Eur J [Internet]. 2020 Jul 27;26(42):9180–205. Available from: <URL>.
  • 27. Alam SN, Sharma N, Kumar L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene [Internet]. 2017 Jan 10;6(1):1–18. Available from: <URL>.
  • 28. Krishnia L, Thakur P, Thakur A. Synthesis of nanoparticles by physical route. In: Synthesis and applications of nanoparticles [Internet]. Singapore: Springer Nature Singapore; 2022. p. 45–59. Available from: <URL>.
  • 29. Chen L, Hong M. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electronic Sci [Internet]. 2022;1(5):210007. Available from: <URL>.
  • 30. Muddapur UM, Alshehri S, Ghoneim MM, Mahnashi MH, Alshahrani MA, Khan AA, et al. Plant-based synthesis of gold nanoparticles and theranostic applications: A review. Molecules [Internet]. 2022 Feb 18;27(4):1391. Available from: <URL>.
  • 31. Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater [Internet]. 2022 Dec 4;5(6):1593–615. Available from: <URL>.
  • 32. Nazneen H, Rather GA, Ali A, Chakravorty A. The role of plant-mediated biosynthesised nanoparticles in agriculture. In: Sustainable agriculture [Internet]. Cham: Springer International Publishing; 2022. p. 97–117. Available from: <URL>.
  • 33. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov [Internet]. 2022 May 1;26:102336. Available from: <URL>.
  • 34. Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, et al. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostructure Chem [Internet]. 2022 Oct 15;12(5):809–31. Available from: <URL>.
  • 35. Ndaba B, Roopnarain A, Rama H, Maaza M. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy. J Integr Agric [Internet]. 2022 May 1;21(5):1225–42. Available from: <URL>.
  • 36. Chong WJ, Shen S, Li Y, Trinchi A, Pejak D, (Louis) Kyratzis I, et al. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges. J Mater Sci Technol [Internet]. 2022 Jun 1;111:120–51. Available from: <URL>.
  • 37. Rakib-Uz-Zaman SM, Hoque Apu E, Muntasir MN, Mowna SA, Khanom MG, Jahan SS, et al. Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges [Internet]. 2022 May 5;13(1):18. Available from: <URL>.
  • 38. Ahmad W, Chandra Bhatt S, Verma M, Kumar V, Kim H. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ Nanotechnology, Monit Manag [Internet]. 2022 Dec 1;18:100674. Available from: <URL>.
  • 39. Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, et al. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. nanomaterials [Internet]. 2022 Jan 28;12(3):457. Available from: <URL>.
  • 40. Kumar VB, Porat Z, Gedanken A. Synthesis of doped/hybrid carbon dots and their biomedical application. Nanomaterials [Internet]. 2022 Mar 8;12(6):898. Available from: <URL>.
  • 41. Aldeen TS, Ahmed Mohamed HE, Maaza M. ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids [Internet]. 2022 Jan 1;160:110313. Available from: <URL>.
  • 42. Das RP, Pradhan AK. An introduction to different methods of nanoparticles synthesis. In: Bio-nano interface [Internet]. Singapore: Springer Singapore; 2022. p. 21–34. Available from: <URL>.
  • 43. Sehgal S, Kumar J, Nishtha. Involvement of gold and silver nanoparticles in lung cancer nanomedicines: A review. Mater Today Proc [Internet]. 2022 Jan 1;62(P12):6468–76. Available from: <URL>.
  • 44. Koohestani H, Salmaniannezhad H, Salmaniannezhad H, Khai MR. Synthesis and characterization of MgF2/Cu coating on aluminum produced by sputtering technique. Mech Adv Compos Struct [Internet]. 2022 Nov 1;9(2):297–302. Available from: <URL>.
  • 45. Alshammari FH. Physical characterization and dielectric properties of chitosan incorporated by zinc oxide and graphene oxide nanoparticles prepared via laser ablation route. J Mater Res Technol [Internet]. 2022 Sep 1;20:740–7. Available from: <URL>.
  • 46. Sivakumar S, Kumaresan L, Bertilla DMS, Dhanabal MHV, Shanmugavelayutham G, Zhu J. Synthesis of magnetic and superhydrophobic nickel nanoparticles by plasma arc discharge method, application for efficient recoverable and repeatable oil separation from oily-water. Appl Phys A [Internet]. 2022 Jan 5;128(1):5. Available from: <URL>.
  • 47. Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, et al. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials [Internet]. 2022 Mar 15;15(6):2160. Available from: <URL>.
  • 48. Biswas MC, Chowdhury A, Hossain MM, Hossain MK. Applications, drawbacks, and future scope of nanoparticle-based polymer composites. In: Nanoparticle-Based Polymer Composites [Internet]. Elsevier; 2022. p. 243–75. Available from: <URL>.
  • 49. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine [Internet]. 2020 Jan;Volume 15:275–300. Available from: <URL>.
  • 50. Nicolae-Maranciuc A, Chicea D, Chicea LM. Ag Nanoparticles for biomedical applications—synthesis and characterization—A review. Int J Mol Sci [Internet]. 2022 May 21;23(10):5778. Available from: <URL>.
  • 51. Gomaa EZ. Microbial mediated synthesis of zinc oxide nanoparticles, characterization and multifaceted applications. J Inorg Organomet Polym Mater [Internet]. 2022 Nov 7;32(11):4114–32. Available from: <URL>.
  • 52. Subhan A, Mourad AHI, Das S. Pulsed laser synthesis of Bi-metallic nanoparticles for biomedical applications: A review. In: 2022 Advances in Science and Engineering Technology International Conferences (ASET) [Internet]. IEEE; 2022. p. 1–7. Available from: <URL>.
  • 53. Tikhonowski G V., Popov AA, Zelepukin I, Popova-Kuznetsova E, Dombrovska YI, Deev SM, et al. Laser synthesis of nanomaterials for nuclear nanomedicine. In: Kabashin A V., Farsari M, Mahjouri-Samani M, editors. Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2022 [Internet]. SPIE; 2022. p. 22. Available from: <URL>.
  • 54. Pastukhov AI, Belyaev IB, Bulmahn JC, Zelepukin I V., Popov AA, Zavestovskaya IN, et al. Laser-ablative aqueous synthesis and characterization of elemental boron nanoparticles for biomedical applications. Sci Rep [Internet]. 2022 Jun 1;12(1):9129. Available from: <URL>.
  • 55. Popov AA, Swiatkowska-Warkocka Z, Marszalek M, Tselikov G, Zelepukin I V., Al-Kattan A, et al. Laser-ablative synthesis of ultrapure magneto-plasmonic core-satellite nanocomposites for biomedical applications. Nanomaterials [Internet]. 2022 Feb 1;12(4):649. Available from: <URL>.v
  • 56. Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, et al. Synthesis, chemical–physical characterization, and biomedical applications of functional gold nanoparticles: A review. Molecules [Internet]. 2021 Sep 26;26(19):5823. Available from: <URL>.
  • 57. AlMalki FA, Khashan KS, Jabir MS, Hadi AA, Sulaiman GM, Abdulameer FA, et al. Eco-friendly synthesis of carbon nanoparticles by laser ablation in water and evaluation of their antibacterial activity. Tan B, editor. J Nanomater [Internet]. 2022 Jan 7;2022(1):7927447. Available from: <URL>.
  • 58. Le TD, Phan H, Kwon S, Park S, Jung Y, Min J, et al. Recent Advances in laser ınduced graphene: Mechanism, fabrication, properties, and applications in flexible electronics. Adv Funct Mater [Internet]. 2022 Nov 7;32(48):2205158. Available from: <URL>.
  • 59. Wasim M, Mushtaq M, Khan SU, Farooq A, Naeem MA, Khan MR, et al. Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Ind Text [Internet]. 2022 Jun 13;51(2S):1886S-1915S. Available from: <URL>.
  • 60. Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu A V. Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci [Internet]. 2020 Jul 1;281:102178. Available from: <URL>.
  • 61. Naser H, Hassan Z, Mohammad SM, Shanshool HM, Al-Hazeem NZ. Parameters influencing the absorbance of gold-silver alloy nanomaterials using the pulsed laser ablation in liquid (plal) approach: A review. Brazilian J Phys [Internet]. 2022 Jun 18;52(3):100. Available from: <URL>.
  • 62. Popov A, Tikhonowski G, Shakhov P, Popova-Kuznetsova E, Tselikov G, Romanov R, et al. Synthesis of titanium nitride nanoparticles by pulsed laser ablation in different aqueous and organic solutions. Nanomaterials [Internet]. 2022 May 13;12(10):1672. Available from: <URL>.
  • 63. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta [Internet]. 2018 Jul 1;184:537–56. Available from: <URL>.
  • 64. Fronya AA, Antonenko S V., Karpov N V., Pokryshkin NS, Eremina AS, Yakunin VG, et al. Germanium nanoparticles prepared by laser ablation in low pressure helium and nitrogen atmosphere for biophotonic applications. Materials [Internet]. 2022 Aug 2;15(15):5308. Available from: <URL>.
  • 65. Tarasenka N, Kornev V, Ramanenka A, Li R, Tarasenko N. Photoluminescent neodymium-doped ZnO nanocrystals prepared by laser ablation in solution for NIR-II fluorescence bioimaging. Heliyon [Internet]. 2022 Jun 1;8(6):e09554. Available from: <URL>.
  • 66. Mat Isa SZ, Zainon R, Tamal M. State of the Art in Gold Nanoparticle synthesisation via pulsed laser ablation in liquid and its characterisation for molecular ımaging: A review. Materials [Internet]. 2022 Jan 24;15(3):875. Available from: <URL>.
  • 67. Pattanayak S, Mollick MMR, Maity D, Chakraborty S, Dash SK, Chattopadhyay S, et al. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. J Saudi Chem Soc [Internet]. 2017 Sep 1;21(6):673–84. Available from: <URL>.
  • 68. Medina Cruz D, Mostafavi E, Vernet-Crua A, Barabadi H, Shah V, Cholula-Díaz JL, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. J Phys Mater [Internet]. 2020 Jul 1;3(3):034005. Available from: <URL>.
  • 69. Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv [Internet]. 2021 Jul 15;11(40):24722–46. Available from: <URL>.
  • 70. Mintcheva N, Yamaguchi S, Kulinich SA. Hybrid TiO2-ZnO nanomaterials prepared using laser ablation in liquid. Materials [Internet]. 2020 Feb 5;13(3):719. Available from: <URL>.
  • 71. Menazea AA, Ahmed MK. Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J Mol Struct [Internet]. 2020 Oct 15;1218:128536. Available from: <URL>.
  • 72. Zhang D, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem Rev [Internet]. 2017 Mar 8;117(5):3990–4103. Available from: <URL>.
  • 73. Theerthagiri J, Karuppasamy K, Lee SJ, Shwetharani R, Kim HS, Pasha SKK, et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci Appl [Internet]. 2022 Aug 10;11(1):250. Available from: <URL>.
  • 74. Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: Past, present and future. J Funct Biomater [Internet]. 2017 Jun 14;8(2):19. Available from: <URL>.
  • 75. Sadrolhosseini AR, Mahdi MA, Alizadeh F, Rashid SA. Laser technology and its applications. In: Laser technology and its applications [Internet]. IntechOpen; 2019. p. 63–81. Available from: <URL>.
  • 76. Su SS, Chang I. Review of production routes of nanomaterials. In: Commercialization of nanotechnologies–A case study approach [Internet]. Cham: Springer International Publishing; 2018. p. 15–29. Available from: <URL>.
  • 77. He Y, Yi C, Zhang X, Zhao W, Yu D. Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. TrAC Trends Anal Chem [Internet]. 2021 Mar 1;136:116191. Available from: <URL>.
  • 78. Makvandi P, Wang C, Zare EN, Borzacchiello A, Niu L, Tay FR. Metal‐Based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv Funct Mater [Internet]. 2020 May 17;30(22):1910021. Available from: <URL>.
  • 79. Pradeep NB, Hegde MMR, Rajendrachari S, Surendranathan AO. Investigation of microstructure and mechanical properties of microwave consolidated TiMgSr alloy prepared by high energy ball milling. Powder Technol [Internet]. 2022 Aug 1;408:117715. Available from: <URL>.
  • 80. Wallyn J, Anton N, Vandamme TF. Synthesis, principles, and properties of magnetite nanoparticles for in vivo ımaging applications—A review. Pharmaceutics [Internet]. 2019 Nov 12;11(11):601. Available from: <URL>.
  • 81. Baláž M, Tkáčiková L, Stahorský M, Casas-Luna M, Dutková E, Čelko L, et al. Ternary and quaternary nanocrystalline Cu-based sulfides as perspective antibacterial materials mechanochemically synthesized in a scalable fashion. ACS Omega [Internet]. 2022 Aug 9;7(31):27164–71. Available from: <URL>.
  • 82. Kotcherlakota R, Das S, Patra CR. Therapeutic applications of green-synthesized silver nanoparticles. In: Green synthesis, characterization and applications of nanoparticles [Internet]. Elsevier; 2019. p. 389–428. Available from: <URL>.
  • 83. Abdullah FH, Bakar NHHA, Bakar MA. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J Hazard Mater [Internet]. 2022 Feb 15;424:127416. Available from: <URL>.
  • 84. Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Adv [Internet]. 2022 Apr 12;4(8):1868–925. Available from: <URL>.
  • 85. Prasad S, Kumar V, Kirubanandam S, Barhoum A. Engineered nanomaterials: nanofabrication and surface functionalization. In: Emerging Applications of Nanoparticles and Architecture Nanostructures [Internet]. Elsevier; 2018. p. 305–40. Available from: <URL>.
  • 86. Shafaei A, Khayati GR. A predictive model on size of silver nanoparticles prepared by green synthesis method using hybrid artificial neural network-particle swarm optimization algorithm. Measurement [Internet]. 2020 Feb 1;151:107199. Available from: <URL>.
  • 87. Alam S, Hossain MZ. A Simple hydrothermal protocol for the synthesis of zinc oxide nanorods. Jagannath Univ J Sci [Internet]. 2021;7(2):75–80. Available from: <URL>.
  • 88. Ghorbani HR. A review of methods for synthesis of Al nanoparticles. Orient J Chem [Internet]. 2014 Dec 31;30(4):1941–9. Available from: <URL>.
  • 89. Khan ZUH, Khan A, Chen Y, Shah NS, Muhammad N, Khan AU, et al. Biomedical applications of green synthesized Nobel metal nanoparticles. J Photochem Photobiol B Biol [Internet]. 2017 Aug 1;173:150–64. Available from: <URL>.
  • 90. Thakur AK, Sathyamurthy R, Velraj R, Lynch I. Development of a novel cellulose foam augmented with candle-soot derived carbon nanoparticles for solar-powered desalination of brackish water. Environ Sci Nano [Internet]. 2022 Apr 14;9(4):1247–70. Available from: <URL>.
  • 91. Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A Comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. nanomaterials [Internet]. 2019 Dec 2;9(12):1719. Available from: <URL>.
  • 92. Jin SE, Jin HE. Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics [Internet]. 2019 Nov 4;11(11):575. Available from: <URL>.
  • 93. Ehsan M, Waheed A, Ullah A, Kazmi A, Ali A, Raja NI, et al. Plant-based bimetallic Silver-Zinc Oxide nanoparticles: A comprehensive perspective of synthesis, biomedical applications, and future trends. Kim BS, editor. Biomed Res Int [Internet]. 2022 Apr 30;2022(1):215183. Available from: <URL>.
  • 94. Sharma A, Kumar S. Synthesis and green synthesis of silver nanoparticles. In: Engineering materials [Internet]. Springer, Cham; 2021. p. 25–64. Available from: <URL>.
  • 95. Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J Biol Sci [Internet]. 2022 Apr 1;29(4):2085–94. Available from: <URL>.
  • 96. Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci [Internet]. 2019 Feb 17;20(4):865. Available from: <URL>.
  • 97. Hara R, Fukuoka T, Takahashi R, Utsumi Y, Yamaguchi A. Surface-enhanced raman spectroscopy using a coffee-ring-type three-dimensional silver nanostructure. RSC Adv [Internet]. 2015 Dec 1;5(2):1378–84. Available from: <URL>.
  • 98. Abdullah AH, Jasim AH, Eltayef EM. The medical applications of silver nanoparticles. Int J Pharmacogn Life Sci [Internet]. 2022 Jan 1;3(1):1–6. Available from: <URL>.
  • 99. Natsuki J, Natsuki T, Hashimoto Y. A review of silver nanoparticles: Synthesis methods, properties and applications. Int J Mater Sci Appl [Internet]. 2015;4(5):325–32. Available from: <URL>.
  • 100. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim [Internet]. 2018 Mar 2;131(3):2027–39. Available from: <URL>.
  • 101. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Perumal V. Nanoparticle synthetic methods: strength and limitations. In: Nanoparticles in analytical and medical devices [Internet]. Elsevier; 2021. p. 31–43. Available from: <URL>.
  • 102. Tharchanaa SB, Priyanka K, Preethi K, Shanmugavelayutham G. Facile synthesis of Cu and CuO nanoparticles from copper scrap using plasma arc discharge method and evaluation of antibacterial activity. Mater Technol [Internet]. 2021 Jan 28;36(2):97–104. Available from: <URL>.
  • 103. Haider A, Kang IK. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review. Adv Mater Sci Eng [Internet]. 2015 Jan 1;2015(1):65257. Available from: <URL>.
  • 104. Corbella C, Portal S, Zolotukhin DB, Martinez L, Lin L, Kundrapu MN, et al. Pulsed anodic arc discharge for the synthesis of carbon nanomaterials. Plasma Sources Sci Technol [Internet]. 2019 Apr 29;28(4):045016. Available from: <URL>.
  • 105. Corbella C, Portal S, Rao J, Kundrapu MN, Keidar M. Tracking nanoparticle growth in pulsed carbon arc discharge. J Appl Phys [Internet]. 2020 Jun 28;127(24):243301. Available from: <URL>.
  • 106. Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, et al. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B [Internet]. 2021 Aug 25;9(33):6553–75. Available from: <URL>.
  • 107. Chaitoglou S, Sanaee MR, Aguiló-Aguayo N, Bertran E. Arc‐Discharge synthesis of iron encapsulated in carbon nanoparticles for biomedical applications. Soni A, editor. J Nanomater [Internet]. 2014 Jan 13;2014(1):178524. Available from: <URL>.
  • 108. Koushika EM, Shanmugavelayutham G, Saravanan P, Balasubramanian C. Rapid synthesis of nano-magnetite by thermal plasma route and its magnetic properties. Mater Manuf Process [Internet]. 2018 Nov 18;33(15):1701–7. Available from: <URL>.
  • 109. Lee S, Kim TH, Kim DW, Park DW. Preparation of silicon nanopowder by recycling silicon wafer waste in radio-frequency thermal plasma process. Plasma Chem Plasma Process [Internet]. 2017 Jul 27;37(4):967–78. Available from: <URL>.
  • 110. Luo F, Tang Z, Xiao S, Xiang Y. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol [Internet]. 2019 Jul 29;34(9):525–33. Available from: <URL>.
  • 111. Corbella C, Portal S, Kundrapu MN, Keidar M. Nanosynthesis by atmospheric arc discharges excited with pulsed-DC power: A review. Nanotechnology [Internet]. 2022 Aug 20;33(34):342001. Available from: <URL>.
  • 112. Zhang D, Ye K, Yao Y, Liang F, Qu T, Ma W, et al. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon N Y [Internet]. 2019 Feb 1;142:278–84. Available from: <URL>.
  • 113. Putri AC, Anwar M, Iftadi I, Ramelan A, Adrianto F, Saraswati TE. Plasma characteristics of under-water arc discharge in nanoparticle fabrication. J Electr Electron Information, Commun Technol [Internet]. 2022 May 30;4(1):11–5. Available from: <URL>.
  • 114. Borand G, Akçamlı N, Uzunsoy D. Structural characterization of graphene nanostructures produced via arc discharge method. Ceram Int [Internet]. 2021 Mar 15;47(6):8044–52. Available from: <URL>.
  • 115. Wang C, Sun L, Sun Q, Zhang Z, Xia W, Xia W. Experimental observations of constricted and diffuse anode attachment in a magnetically rotating arc at atmospheric pressure. Plasma Chem Plasma Process [Internet]. 2019 Mar 21;39(2):407–21. Available from: <URL>.
  • 116. Rane AV, Kanny K, Abitha VK, Thomas S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials [Internet]. Elsevier; 2018. p. 121–39. Available from: <URL>.
  • 117. Ghribi F, El Mir L, Omri K, Djessas K. Sputtered ZnS thin film from nanoparticles synthesized by hydrothermal route. Optik [Internet]. 2016 Apr 1;127(7):3688–92. Available from: <URL>.
  • 118. Shahidi S, Dalalsharifi S, Ghoranneviss M, Mongkholrattanasit R. In situ deposition of magnetic nanoparticles on glass mat using plasma sputtering method. J Text Inst [Internet]. 2022 Mar 4;113(3):349–59. Available from: <URL>.
  • 119. Tulinski M, Jurczyk M. Nanomaterials Synthesis Methods. In: Metrology and standardization of nanotechnology [Internet]. Wiley; 2017. p. 75–98. Available from: <URL>.
  • 120. Nattah AM, Mohaisen AH. An overview of titanium oxide nanoparticles, chareacterisation, synthesis and potential applications. J Univ Babylon Eng Sci [Internet]. 2022;30(1):72–85. Available from: <URL>.
  • 121. Palmer RE, Cai R, Vernieres J. Synthesis without Solvents: The cluster (nanoparticle) beam route to catalysts and sensors. Acc Chem Res [Internet]. 2018 Sep 18;51(9):2296–304. Available from: <URL>.
  • 122. López-Lorente AI, Picca RA, Izquierdo J, Kranz C, Mizaikoff B, Di Franco C, et al. Ion beam sputtering deposition of silver nanoparticles and TiOx/ZnO nanocomposites for use in surface enhanced vibrational spectroscopy (SERS and SEIRAS). Microchim Acta [Internet]. 2018 Feb 2;185(2):153. Available from: <URL>.
  • 123. Zhao Y, Zhang X, Chen X, Li W, Wang L, Li Z, et al. Preparation of Sn-NiO films and all-solid-state devices with enhanced electrochromic properties by magnetron sputtering method. Electrochim Acta [Internet]. 2021 Jan 20;367:137457. Available from: <URL>.
  • 124. Wang D, Qu Z, Wang Y, Cheng E, Wang Q. Role of Cu-doping concentration in the synthesis, microstructure and properties of Ag thin films via magnetron co-sputtering method. Vacuum [Internet]. 2023 Oct 1;216:112437. Available from: <URL>.
  • 125. Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, et al. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environ Res [Internet]. 2022 May 1;207:112202. Available from: <URL>.
  • 126. Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, et al. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int J Mol Sci [Internet]. 2021 Jan 20;22(3):989. Available from: <URL>.
  • 127. Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, et al. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules [Internet]. 2021 Feb 5;26(4):844. Available from: <URL>.
  • 128. Razavi M, Salahinejad E, Fahmy M, Yazdimamaghani M, Vashaee D, Tayebi L. Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Green processes for nanotechnology [Internet]. Cham: Springer International Publishing; 2015. p. 207–35. Available from: <URL>.
  • 129. Mondal S, Hoang G, Manivasagan P, Moorthy MS, Kim HH, Vy Phan TT, et al. Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Mater Chem Phys [Internet]. 2019 Apr 15;228:344–56. Available from: <URL>.
  • 130. Waris A, Din M, Ali A, Ali M, Afridi S, Baset A, et al. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg Chem Commun [Internet]. 2021 Jan 1;123:108369. Available from: <URL>.
  • 131. Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, et al. Nanomicrobiology: Emerging trends in microbial synthesis of nanomaterials and their applications. J Clust Sci [Internet]. 2023 Mar 4;34(2):639–64. Available from: <URL>.
  • 132. Lateef A, Elegbede JA, Akinola PO, Ajayi VA. Biomedical applications of green synthesized-metallic nanoparticles: A review. Pan African J Life Sci [Internet]. 2019 Nov 1;3(1):157–82. Available from: <URL>.
  • 133. Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO. Plant extracts mediated metal-based nanoparticles: Synthesis and biological applications. Biomolecules [Internet]. 2022 Apr 24;12(5):627. Available from: <URL>.
  • 134. Katata-Seru L, Moremedi T, Aremu OS, Bahadur I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq [Internet]. 2018 Apr 15;256:296–304. Available from: <URL>.
  • 135. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, et al. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology [Internet]. 2022 Jun 15;16(4):115–44. Available from: <URL>.
  • 136. Aisida SO, Akpa PA, Ahmad I, Zhao T kai, Maaza M, Ezema FI. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur Polym J [Internet]. 2020 Jan 5;122:109371. Available from: <URL>.
  • 137. Nayak V, Singh KR, Verma R, Pandey MD, Singh J, Pratap Singh R. Recent advancements of biogenic iron nanoparticles in cancer theranostics. Mater Lett [Internet]. 2022 Apr 15;313:131769. Available from: <URL>.
  • 138. Menazea AA, Ismail AM, Awwad NS, Ibrahium HA. Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J Mater Res Technol [Internet]. 2020 Sep 1;9(5):9598–606. Available from: <URL>.
  • 139. Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Mater Sci Eng R Reports [Internet]. 2019 Jul 1;137:66–105. Available from: <URL>.
  • 140. Aremu OS, Qwebani-Ogunleye T, Katata-Seru L, Mkhize Z, Trant JF. Synergistic broad-spectrum antibacterial activity of Hypoxis hemerocallidea-derived silver nanoparticles and streptomycin against respiratory pathobionts. Sci Rep [Internet]. 2021 Jul 27;11(1):15222. Available from: <URL>.
  • 141. von Baeckmann C, Guillet-Nicolas R, Renfer D, Kählig H, Kleitz F. A Toolbox for the synthesis of multifunctionalized mesoporous silica nanoparticles for biomedical applications. ACS Omega [Internet]. 2018 Dec 31;3(12):17496–510. Available from: <URL>.
  • 142. Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small [Internet]. 2017 Feb 16;13(5):1602660. Available from: <URL>.
  • 143. Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, et al. Synthesis of silver nanoparticles and their biomedical applications - A comprehensive review. Curr Pharm Des [Internet]. 2019 Oct 3;25(24):2650–60. Available from: <URL>.
  • 144. Mirzaei H, Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int [Internet]. 2017 Jan 1;43(1):907–14. Available from: <URL>.
  • 145. Cardoso VF, Francesko A, Ribeiro C, Bañobre‐López M, Martins P, Lanceros‐Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater [Internet]. 2018 Mar 27;7(5):1700845. Available from: <URL>.
  • 146. Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega [Internet]. 2022 Aug 9;7(31):27004–20. Available from: <URL>.
  • 147. Ganapathe LS, Mohamed MA, Mohamad Yunus R, Berhanuddin DD. Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. magnetochemistry [Internet]. 2020 Dec 3;6(4):68. Available from: <URL>.
  • 148. Verma R, Pathak S, Srivastava AK, Prawer S, Tomljenovic-Hanic S. ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J Alloys Compd [Internet]. 2021 Sep 25;876:160175. Available from: <URL>.
  • 149. Kalpana VN, Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl [Internet]. 2018 Aug 1;2018(1):569758. Available from: <URL>.
  • 150. Tran T Van, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DVN. Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ Chem Lett [Internet]. 2022 Apr 8;20(2):1309–31. Available from: <URL>.
  • 151. Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med [Internet]. 2017 Jun 11;28(6):92. Available from: <URL>.
  • 152. Zhu S, Gong L, Xie J, Gu Z, Zhao Y. Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods [Internet]. 2017 Dec 20;1(12):1700220. Available from: <URL>.
  • 153. Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, et al. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale [Internet]. 2022 Feb 17;14(7):2534–71. Available from: <URL>.
  • 154. Andrade RGD, Veloso SRS, Castanheira EMS. Shape anisotropic iron oxide-based magnetic nanoparticles: Synthesis and biomedical applications. Int J Mol Sci [Internet]. 2020 Apr 1;21(7):2455. Available from: <URL>.
  • 155. Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, et al. Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum Marianum for diverse biomedical applications. Nanomedicine [Internet]. 2019 Mar 4;14(6):655–73. Available from: <URL>.
  • 156. Li R, Liu Y, Seidi F, Deng C, Liang F, Xiao H. Design and construction of fluorescent cellulose nanocrystals for biomedical applications. Adv Mater Interfaces [Internet]. 2022 Apr 6;9(11):2101293. Available from: <URL>.
  • 157. Ahmad B, Hafeez N, Bashir S, Rauf A, Mujeeb-ur-Rehman. Phytofabricated gold nanoparticles and their biomedical applications. Biomed Pharmacother [Internet]. 2017 May 1;89:414–25. Available from: <URL>.
  • 158. Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater [Internet]. 2018 Feb;7(4):1700831. Available from: <URL>.
  • 159. Rajivgandhi G, Mythili Gnanamangai B, Heela Prabha T, Poornima S, Maruthupandy M, Alharbi NS, et al. Biosynthesized zinc oxide nanoparticles (ZnO NPs) using actinomycetes enhance the anti-bacterial efficacy against K. Pneumoniae. J King Saud Univ - Sci [Internet]. 2022 Jan 1;34(1):101731. Available from: <URL>.
  • 160. Undabarrena A, Ugalde JA, Seeger M, Cámara B. ­Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ [Internet]. 2017 Feb 14;5(2):e2912. Available from: <URL>.
  • 161. AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AEZMA, Husseiny SM. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci [Internet]. 2017 Jan 1;24(1):208–16. Available from: <URL>.
  • 162. Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology [Internet]. 2021 May 29;19(1):159. Available from: <URL>.
  • 163. Willem de Vries J, Schnichels S, Hurst J, Strudel L, Gruszka A, Kwak M, et al. DNA nanoparticles for ophthalmic drug delivery. Biomaterials [Internet]. 2018 Mar 1;157:98–106. Available from: <URL>.
  • 164. Talebi S, Ramezani F, Ramezani M. Biosythesis of metal nanoparticles by microorganism. Nanocon [Internet]. 2010;10:12–4. Available from: <URL>.
  • 165. Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, et al. Smart Superstructures with Ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano [Internet]. 2016 Jul 26;10(7):6753–61. Available from: <URL>.
  • 166. Chowdhury NK, Choudhury R, Gogoi B, Chang CM, Pandey RP. Microbial synthesis of gold nanoparticles and their application. Curr Drug Targets [Internet]. 2022 Jul 28;23(7):752–60. Available from: <URL>.
  • 167. Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol [Internet]. 2019 Apr 18;103(7):2913–35. Available from: <URL>.
  • 168. Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv [Internet]. 2019 Apr 26;9(23):12944–67. Available from: <URL>.
  • 169. De Matteis V, Cascione M, Toma CC, Leporatti S. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials [Internet]. 2018 May 10;8(5):319. Available from: <URL>.
  • 170. Sagadevan S, Lett JA, Fatimah I, Lokanathan Y, Léonard E, Oh WC, et al. Current trends in the green syntheses of tin oxide nanoparticles and their biomedical applications. Mater Res Express [Internet]. 2021 Aug 1;8(8):082001. Available from: <URL>.
  • 171. Kiani BH, Haq I ul, Alhodaib A, Basheer S, Fatima H, Naz I, et al. Comparative evaluation of biomedical applications of zinc nanoparticles synthesized by using Withania somnifera plant extracts. Plants [Internet]. 2022 Jun 7;11(12):1525. Available from: <URL>.
  • 172. Khan S, Ul-Islam M, Ullah MW, Zhu Y, Narayanan KB, Han SS, et al. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int J Biol Macromol [Internet]. 2022 Jun 1;209:9–30. Available from: <URL>.
  • 173. Asad S, Anwar N, Shah M, Anwar Z, Arif M, Rauf M, et al. Biological synthesis of silver nanoparticles by Amaryllis vittata (L.) Herit: From antimicrobial to biomedical applications. Materials [Internet]. 2022 Aug 9;15(16):5478. Available from: <URL>.
  • 174. Poudel DK, Niraula P, Aryal H, Budhathoki B, Phuyal S, Marahatha R, et al. Plant-mediated green synthesis of Ag NPs and their possible applications: A critical review. Kumar B, editor. J Nanotechnol [Internet]. 2022 Mar 16;2022(1):779237. Available from: <URL>.
  • 175. Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran T Bin, et al. Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ - Sci [Internet]. 2022 Apr 1;34(3):101869. Available from: <URL>.
  • 176. Kiani BH, Ikram F, Fatima H, Alhodaib A, Haq I ul, Ur-Rehman T, et al. Comparative evaluation of biomedical and phytochemical applications of zinc nanoparticles by using Fagonia cretica extracts. Sci Rep [Internet]. 2022 Jun 15;12(1):10024. Available from: <URL>.
  • 177. Danish MSS, Estrella-Pajulas LL, Alemaida IM, Grilli ML, Mikhaylov A, Senjyu T. Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals [Internet]. 2022 Apr 29;12(5):769. Available from: <URL>.
  • 178. Nahari MH, Al Ali A, Asiri A, Mahnashi MH, Shaikh IA, Shettar AK, et al. Green synthesis and characterization of ıron nanoparticles synthesized from aqueous leaf extract of Vitex leucoxylon and ıts biomedical applications. Nanomaterials [Internet]. 2022 Jul 14;12(14):2404. Available from: <URL>.
  • 179. Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res [Internet]. 2017 May 4;16(4):743–53. Available from: <URL>.
  • 180. Khan SA, Lee CS. Green Biological synthesis of nanoparticles and their biomedical applications. In: Nanotechnology in the life sciences [Internet]. Springer, Cham; 2020. p. 247–80. Available from: <URL>.
  • 181. Soni M, Mehta P, Soni A, Goswami GK. Green nanoparticles: Synthesis and applications. IOSR J Biotechnol Biochem [Internet]. 2018;4(3):78–83. Available from: <URL>.
  • 182. Khan T, Ullah N, Khan MA, Mashwani Z ur R, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci [Internet]. 2019 Oct 1;272:102017. Available from: <URL>.
  • 183. Happy Agarwal, Soumya Menon, Venkat Kumar S, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact [Internet]. 2018 Apr 25;286:60–70. Available from: <URL>.
  • 184. Kigozi M, Ezealigo BN, Onwualu AP, Dzade NY. Hydrothermal synthesis of metal oxide composite cathode materials for high energy application. In: Chemically deposited nanocrystalline metal oxide thin films [Internet]. Cham: Springer International Publishing; 2021. p. 489–508. Available from: <URL>.
  • 185. Hu J, Li H, Muhammad S, Wu Q, Zhao Y, Jiao Q. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. J Solid State Chem [Internet]. 2017 Sep 1;253:113–20. Available from: <URL>.
  • 186. Malekshahi Byranvand M, Kharat AN, Fatholahi L, Malekshahi Beiranvand Z. A Review on synthesis of Nano-TiO2 via different methods. J Nanostructures [Internet]. 2013;3:1–9. Available from: <URL>.
  • 187. Bulcha B, Leta Tesfaye J, Anatol D, Shanmugam R, Dwarampudi LP, Nagaprasad N, et al. Synthesis of zinc oxide nanoparticles by hydrothermal methods and spectroscopic ınvestigation of ultraviolet radiation protective properties. R L, editor. J Nanomater [Internet]. 2021 Sep 22;2021(1):617290. Available from: <URL>.
  • 188. Jubeer EM, Manthrammel MA, Subha PA, Shkir M, Biju KP, AlFaify SA. Defect engineering for enhanced optical and photocatalytic properties of ZnS nanoparticles synthesized by hydrothermal method. Sci Rep [Internet]. 2023 Oct 5;13(1):16820. Available from: <URL>.
  • 189. Chen N, Liu B, Zhang P, Wang C, Du Y, Chang W, et al. Enhanced photocatalytic performance of Ce-doped SnO2 hollow spheres by a one-pot hydrothermal method. Inorg Chem Commun [Internet]. 2021 Oct 1;132:108848. Available from: <URL>.
  • 190. Khan S, Usman M, Abdullah M, Suleman Waheed M, Faheem Ashiq M, Ishfaq Ahmad M, et al. Facile synthesis of CuAl2O4/rGO nanocomposite via the hydrothermal method for supercapacitor applications. Fuel [Internet]. 2024 Feb 1;357:129688. Available from: <URL>.
  • 191. Soares CPP, Baptista R de L, Cesar DV. Solvothermal reduction of graphite oxide using alcohols. Mater Res [Internet]. 2017 Dec 18;21(1):e20170726. Available from: <URL>.
  • 192. Yuan R, Wen H, Zeng L, Li X, Liu X, Zhang C. Supercritical CO2 assisted solvothermal preparation of CoO/Graphene nanocomposites for high performance lithium-ion batteries. Nanomaterials [Internet]. 2021 Mar 10;11(3):694. Available from: <URL>.
  • 193. Perumal S, Monikandaprabu K, Sambandam CG, Mohamed AP. Synthesis and characterization studies of solvothermally synthesized undoped and Ag-doped TiO2 nanoparticles using toluene as a solvent. J Eng Res Appl [Internet]. 2014;4(7):184–7. Available from: <URL>.
  • 194. Uematsu T, Baba M, Oshima Y, Tsuda T, Torimoto T, Kuwabata S. Atomic resolution ımaging of gold nanoparticle generation and growth in ıonic liquids. J Am Chem Soc [Internet]. 2014 Oct 1;136(39):13789–97. Available from: <URL>.
  • 195. Kløve M, Philippot G, Auxéméry A, Aymonier C, Iversen BB. Stabilizing tetragonal ZrO2 nanocrystallites in solvothermal synthesis. Nanoscale [Internet]. 2024 Feb 8;16(6):3185–90. Available from: <URL>.
  • 196. Zhang L, Feng L, Li P, Chen X, Jiang J, Zhang S, et al. Direct Z-scheme photocatalyst of hollow CoSx@CdS polyhedron constructed by ZIF-67-templated one-pot solvothermal route: A signal-on photoelectrochemical sensor for mercury(II). Chem Eng J [Internet]. 2020 Sep 1;395:125072. Available from: <URL>.
  • 197. Revathi J, Abel MJ, Archana V, Sumithra T, Thiruneelakandan R, Joseph prince J. Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Phys B Condens Matter [Internet]. 2020 Jun 15;587:412136. Available from: <URL>.
  • 198. Pu S, Xue S, Yang Z, Hou Y, Zhu R, Chu W. In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies. Environ Sci Pollut Res [Internet]. 2018 Jun 13;25(18):17310–20. Available from: <URL>.
  • 199. Priyadharshini P, Shobika PA, Monisha P, Gomathi SS, Pushpanathan K. Nickel ferrite magnetic nanoparticles: evidence for superparamagnetism in smaller size particles. J Aust Ceram Soc [Internet]. 2022 Dec 5;58(5):1455–80. Available from: <URL>.
  • 200. Arya S, Mahajan P, Mahajan S, Khosla A, Datt R, Gupta V, et al. Review—influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J Solid State Sci Technol [Internet]. 2021 Feb 1;10(2):023002. Available from: <URL>.
  • 201. Tadic M, Panjan M, Tadic BV, Lazovic J, Damnjanovic V, Kopani M, et al. Magnetic properties of hematite (α−Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. J Electr Eng [Internet]. 2019 Dec 1;70(7):71–6. Available from: <URL>.
  • 202. Youssef F, Farghaly U, Abd El-Baky RM, Waly N. Comparative study of antibacterial effects of titanium dioxide nanoparticles alone and in combination with antibiotics on MDR Pseudomonas aeruginosa Strains. Int J Nanomedicine [Internet]. 2020 May;Volume 15:3393–404. Available from: <URL>.
  • 203. Arkaban H, Khajeh Ebrahimi A, Yarahmadi A, Zarrintaj P, Barani M. Development of a multifunctional system based on CoFe2O4 @polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology [Internet]. 2021 Jul 23;32(30):305101. Available from: <URL>.
  • 204. Liu J, Guo C, Zhang Y. Research of crystal changing of barium hexaferrite prepared by citric acid sol–gel method. Funct Mater Lett [Internet]. 2017 Apr 3;10(02):1750001. Available from: <URL>.
  • 205. Zakir R, Iqbal SS, Rehman AU, Nosheen S, Ahmad TS, Ehsan N, et al. Spectral, electrical, and dielectric characterization of Ce-doped Co-Mg-Cd spinel nano-ferrites synthesized by the sol-gel auto combustion method. Ceram Int [Internet]. 2021 Oct 15;47(20):28575–83. Available from: <URL>.
  • 206. Suneetha RB, Selvi P, Vedhi C. Synthesis, structural and electrochemical characterization of Zn doped iron oxide/grapheneoxide/chitosan nanocomposite for supercapacitor application. Vacuum [Internet]. 2019 Jun 1;164:396–404. Available from: <URL>.
  • 207. Zeng X, Teng J, Yu J gang, Tan A shuang, Fu D fa, Zhang H. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. Int J Miner Metall Mater [Internet]. 2018 Jan 3;25(1):102–9. Available from: <URL>.
  • 208. Nawaz M, Moztahida M, Kim J, Shahzad A, Jang J, Miran W, et al. Photodegradation of microcystin-LR using graphene-TiO2/sodium alginate aerogels. Carbohydr Polym [Internet]. 2018 Nov 1;199:109–18. Available from: <URL>.
  • 209. Hong YL, Liu Z, Wang L, Zhou T, Ma W, Xu C, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science [Internet]. 2020 Aug 7;369(6504):670–4. Available from: <URL>.
  • 210. Xu S, Zhang L, Wang B, Ruoff RS. Chemical vapor deposition of graphene on thin-metal films. Cell Reports Phys Sci [Internet]. 2021 Mar 24;2(3):100372. Available from: <URL>.
  • 211. Wu Y, Zhao Z, Sun C, Ji C, Zhang Y, Qu R, et al. In-situ synthesis of PPTA nanomaterials in PS matrix and their enhanced performances in PS-based nanocomposite. Eur Polym J [Internet]. 2022 Oct 5;179:111535. Available from: <URL>.
  • 212. Suba A, Selvarajan P, Jebaraj Devadasan J. Rubidium chloride doped magnesium oxide nanomaterial by using green synthesis and its characterization. Chem Phys Lett [Internet]. 2022 Apr 16;793:139463. Available from: <URL>.
  • 213. Amparo SZS do, Vasconcelos CKB de, Almeida AIAR, Sena LEB, Lima MCFS, Medeiros FS, et al. Microwave-assisted synthesis of PAM preformed particle gels reinforced with carbon nanomaterials for conformance control in oil recovery. Fuel [Internet]. 2022 Dec 15;330:125650. Available from: <URL>.
  • 214. Zhang J, Tian X, Cui X, Zheng A, Li J, Bai Y, et al. Facile synthesis of hyperbranched magnetic nanomaterials for selective adsorption of proteins. Talanta [Internet]. 2023 Jan 15;252:123895. Available from: <URL>.
  • 215. Hammond OS, Mudring AV. Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials. Chem Commun [Internet]. 2022 Mar 22;58(24):3865–92. Available from: <URL>.
  • 216. Siwal SS, Sheoran K, Mishra K, Kaur H, Saini AK, Saini V, et al. Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere [Internet]. 2022 Apr 1;293:133542. Available from: <URL>.
  • 217. Shingdilwar S, Kumar D, Sahu B, Banerjee S. Straightforward synthesis of multifunctional porous polymer nanomaterials for CO2 capture and removal of contaminants. Polym Chem [Internet]. 2022 Apr 12;13(15):2165–72. Available from: <URL>.
  • 218. Fu Y, Li Z, Hu C, Li Q, Chen Z. Synthesis of carbon dots-based covalent organic nanomaterial as stationary phase for open tubular capillary electrochromatography. J Chromatogr A [Internet]. 2022 Aug 16;1678:463343. Available from: <URL>.
  • 219. Li Q, Cui Y, Lin J, Zhao C, Ding L. Synthesis of carbon microsphere-assisted snowflake-like ZnO nanomaterials for selective detection of NO2 at room temperature. J Ind Eng Chem [Internet]. 2022 Jun 25;110:542–51. Available from: <URL>.
  • 220. Hussain SA, Ali S, Islam ZU, Khan M. Low-temperature synthesis of graphite flakes and carbon-based nanomaterials from banana peels using hydrothermal process for photoelectrochemical water-splitting. Phys E Low-dimensional Syst Nanostructures [Internet]. 2022 Jul 1;141:115231. Available from: <URL>.
  • 221. Li Q, Huang N, Cui Y, Lin J, Zhao C, Ding L. Synthesis of porous rod-like In2O3 nanomaterials and its selective detection of NO at room temperature. J Alloys Compd [Internet]. 2022 May 5;902:163632. Available from: <URL>.
  • 222. Wang BB, Zhong XX, Zhu J, Wang Y, Zhang Y, Cvelbar U, et al. Single-step synthesis of TiO2/WO3− hybrid nanomaterials in ethanoic acid: Structure and photoluminescence properties. Appl Surf Sci [Internet]. 2021 Oct 1;562:150180. Available from: <URL>.
  • 223. Mohan V V., Anjana PM, Rakhi RB. One pot synthesis of tungsten oxide nanomaterial and application in the field of flexible symmetric supercapacitor energy storage device. Mater Today Proc [Internet]. 2022 Jan 1;62:848–51. Available from: <URL>.
  • 224. Xu H, Liu C, Srinivasakannan C, Chen M, Wang Q, Li L, et al. Hydrothermal synthesis of one-dimensional α-MoO3 nanomaterials and its unique sensing mechanism for ethanol. Arab J Chem [Internet]. 2022 Sep 1;15(9):104083. Available from: <URL>.
  • 225. Sehrawat P, Malik RK, Punia R, Maken S, Kumari N. Ecofriendly synthesis and white light-emitting properties of BaLa2ZnO5:Dy3+ nanomaterials for lighting application in NUV-WLEDs and solar cells. Chem Phys Lett [Internet]. 2022 Apr 1;792:139399. Available from: <URL>.
  • 226. Najahi Mohammadizadeh Z, Hamidinasab M, Ahadi N, Bodaghifard MA. A novel hybrid organic-ınorganic nanomaterial: Preparation, characterization and application in synthesis of diverse heterocycles. Polycycl Aromat Compd [Internet]. 2022 Apr 21;42(4):1282–301. Available from: <URL>.
  • 227. Khan MJ, Tahir K, El-Zahhar AA, Arooj A, AL-Abdulkarim HA, Saleh EAM, et al. Facile synthesis of silver modified zinc oxide nanocomposite: An efficient visible light active nanomaterial for bacterial inhibition and dye degradation. Photodiagnosis Photodyn Ther [Internet]. 2021 Dec 1;36:102619. Available from: <URL>.
  • 228. Chowdhury A, Kumari S, Khan AA, Hussain S. Synthesis of mixed phase crystalline CoNi2S4 nanomaterial and selective mechanism for adsorption of Congo red from aqueous solution. J Environ Chem Eng [Internet]. 2021 Dec 1;9(6):106554. Available from: <URL>.
  • 229. Jarariya R, Suresh K. Spinel ferrite nanomaterials - MgFe2O4 - Synthesis by appropriate microwave solution combustion (Msc) method of visible light–responsive photocatalyst for Rb21 dye degradation. Mater Today Proc [Internet]. 2023 Jan 1;72:2618–29. Available from: <URL>.
  • 230. Liu H, Zhu Y, Ma J, Chen C, Cheng P, Zhang S. Hydrothermal synthesis of Pd-doped CeO2 nanomaterials and electrochemical detection for phenol. J Cryst Growth [Internet]. 2022 May 15;586:126626. Available from: <URL>.
  • 231. Sehrawat P, Malik RK, Punia R, Sheoran M, Singh S, Kumar M. New Ba2YAlO5:Dy3+ nanomaterials for WLEDs: Propellant combustion synthesis and photometric features for enhanced emission of cool-white light under NUV excitation. Chem Phys Lett [Internet]. 2021 Oct 16;781:138985. Available from: <URL>.
  • 232. Vijay R, Drisya VM, Selta DRF, Rathi MA, Gopalakrishnan V, Alkhalifah DHM, et al. Synthesis and characterization of silver nanomaterial from aqueous extract of Commelina forskaolii and its potential antimicrobial activity against Gram negative pathogens. J King Saud Univ - Sci [Internet]. 2023 Jan 1;35(1):102373. Available from: <URL>.
  • 233. Acauan LH, Kaiser AL, Wardle BL. Direct synthesis of carbon nanomaterials via surface activation of bulk copper. Carbon N Y [Internet]. 2021 Jun 15;177:1–10. Available from: <URL>.
  • 234. Zaikovskii A, Yudin I, Kozlachkov D, Nartova A, Fedorovskaya E. Gas pressure control of electric arc synthesis of composite Sn–SnO2–C nanomaterials. Vacuum [Internet]. 2022 Jan 1;195:110694. Available from: <URL>.
  • 235. Singh N, Kalbande PN, Umbarkar S, Sudarsanam P. Efficient cascade C-N coupling reactions catalyzed by a recyclable MoOx/Nb2O5 nanomaterial for valuable N-heterocycles synthesis. Mol Catal [Internet]. 2022 Nov 1;532:112742. Available from: <URL>.
  • 236. Sahoo SK, Panigrahi GK, Sahu MK, Arzoo A, Sahoo JK, Sahoo A, et al. Biological synthesis of GO-MgO nanomaterial using Azadirachta indica leaf extract: A potential bio-adsorbent for removing Cr(VI) ions from aqueous media. Biochem Eng J [Internet]. 2022 Jan 1;177:108272. Available from: <URL>.
  • 237. Sharma SK, Sharma G, Sharma A, Bhardwaj K, Preeti K, Singh K, et al. Synthesis of silica and carbon-based nanomaterials from rice husk ash by ambient fiery and furnace sweltering using a chemical method. Appl Surf Sci Adv [Internet]. 2022 Apr 1;8:100225. Available from: <URL>.
  • 238. Rajangam K, Amuthameena S, Thangavel S, Sanjanadevi VS, Balraj B. Synthesis and characterisation of Ag incorporated TiO2 nanomaterials for supercapacitor applications. J Mol Struct [Internet]. 2020 Nov 5;1219:128661. Available from: <URL>.
  • 239. Govindaraju K, Anand KV, Anbarasu S, Theerthagiri J, Revathy S, Krupakar P, et al. Seaweed (Turbinaria ornata)-assisted green synthesis of magnesium hydroxide [Mg(OH)2] nanomaterials and their anti-mycobacterial activity. Mater Chem Phys [Internet]. 2020 Jan 1;239:122007. Available from: <URL>.
  • 240. Khan MD, Aamir M, Akhtar J, Malik MA, Revaprasadu N. Metal selenobenzoate complexes: Novel single source precursors for the synthesis of metal selenide semiconductor nanomaterials. Mater Today Proc [Internet]. 2019 Jan 1;10:66–74. Available from: <URL>.
  • 241. Liu PR, Yang ZY, Hong Y, Hou YL. An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. Algal Res [Internet]. 2018 Apr 1;31:173–82. Available from: <URL>.
  • 242. Kaynar UH, Çam Kaynar S, Ekdal Karali E, Ayvacıkli M, Can N. Adsorption of thorium(IV) ions by metal ion doped ZnO nanomaterial prepared with combustion synthesis: Empirical modelling and process optimization by response surface methodology (RSM). Appl Radiat Isot [Internet]. 2021 Dec 1;178:109955. Available from: <URL>.
  • 243. Li X, Zhang F, Zhai B, Wang X, Zhao J, Wang Z. Facile synthesis of porous anatase TiO2 nanomaterials with the assistance of biomass resource for lithium ion batteries with high-rate performance. J Phys Chem Solids [Internet]. 2020 Oct 1;145:109552. Available from: <URL>.
  • 244. Sinha S, Kr. Aman A, Kr. Singh R, Kr N, Shivani K. Calcium oxide(CaO) nanomaterial (Kukutanda twak Bhasma) from egg shell: Green synthesis, physical properties and antimicrobial behaviour. Mater Today Proc [Internet]. 2021 Jan 1;43:3414–9. Available from: <URL>.
  • 245. Abdullah, Hussain T, Faisal S, Rizwan M, Saira, Zaman N, et al. Green synthesis and characterization of copper and nickel hybrid nanomaterials: Investigation of their biological and photocatalytic potential for the removal of organic crystal violet dye. J Saudi Chem Soc [Internet]. 2022 Jul 1;26(4):101486. Available from: <URL>.
  • 246. Tigwere GA, Khan MD, Nyamen LD, Aboud AA, Moyo T, Dlamini ST, et al. Molecular precursor route for the phase selective synthesis of α-MnS or metastable γ-MnS nanomaterials for magnetic studies and deposition of thin films by AACVD. Mater Sci Semicond Process [Internet]. 2022 Mar 1;139:106330. Available from: <URL>.
  • 247. Vasudha M, Khan AA, Bhumika KM, Gayathri D, Nagaswarupa HP, Shashi shekhar TR, et al. Facile chemical synthesis of Ca3MgAl10O17 nanomaterials for photocatalytic and non-enzymatic sensor applications. Sensors Int [Internet]. 2021 Jan 1;2:100082. Available from: <URL>.
  • 248. Köksoy B, Akyüz D, Şenocak A, Durmuş M, Demirbaş E. Novel SWCNT-hybrid nanomaterial functionalized with subphthalocyanine substituted asymmetrical zinc (II) phthalocyanine conjugate: Design, synthesis, characterization and sensor properties for pesticides. Sensors Actuators B Chem [Internet]. 2021 Feb 15;329:129198. Available from: <URL>.
  • 249. Dinh VP, Tran NQ, Le NQT, Tran QH, Nguyen TD, Le VT. Facile synthesis of FeFe2O4 magnetic nanomaterial for removing methylene blue from aqueous solution. Prog Nat Sci Mater Int [Internet]. 2019 Dec 1;29(6):648–54. Available from: <URL>.
  • 250. Velázquez-Hernández I, Estévez M, Vergara-Castañeda H, Guerra-Balcázar M, Álvarez-Contreras L, Luna-Bárcenas G, et al. Synthesis and application of biogenic gold nanomaterials with {100} facets for crude glycerol electro-oxidation. Fuel [Internet]. 2020 Nov 1;279:118505. Available from: <URL>.
  • 251. Bayan EM, Lupeiko TG, Pustovaya LE, Volkova MG, Butova VV, Guda AA. Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. J Alloys Compd [Internet]. 2020 May 5;822:153662. Available from: <URL>.
  • 252. Chandrappa M, Swathi K, Girish Kumar S, Pullela PK. Nanomaterial assisted bulk scale synthesis of 2-methyl-6-nitroquinoline. Mater Today Proc [Internet]. 2021 Jan 1;37(Part 2):1469–74. Available from: <URL>.
  • 253. Zhang Y, Chen Y, Kang ZW, Gao X, Zeng X, Liu M, et al. Waste eggshell membrane-assisted synthesis of magnetic CuFe2O4 nanomaterials with multifunctional properties (adsorptive, catalytic, antibacterial) for water remediation. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021 Mar 5;612:125874. Available from: <URL>.
  • 254. Uppal H, Chawla S, Joshi AG, Haranath D, Vijayan N, Singh N. Facile chemical synthesis and novel application of zinc oxysulfide nanomaterial for instant and superior adsorption of arsenic from water. J Clean Prod [Internet]. 2019 Jan 20;208:458–69. Available from: <URL>.
  • 255. Al-Anazi A, Abdelraheem WH, Scheckel K, Nadagouda MN, O’Shea K, Dionysiou DD. Novel franklinite-like synthetic zinc-ferrite redox nanomaterial: synthesis, and evaluation for degradation of diclofenac in water. Appl Catal B Environ [Internet]. 2020 Oct 15;275:119098. Available from: <URL>.
  • 256. Adimule V, Yallur BC, Challa M, Joshi RS. Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon [Internet]. 2021 Dec 1;7(12):e08541. Available from: <URL>.
  • 257. Bello IT, Adio SA, Oladipo AO, Adedokun O, Mathevula LE, Dhlamini MS. Molybdenum sulfide‐based supercapacitors: From synthetic, bibliometric, and qualitative perspectives. Int J Energy Res [Internet]. 2021 Jul 11;45(9):12665–92. Available from: <URL>.
There are 257 citations in total.

Details

Primary Language English
Subjects Bioassays
Journal Section REVIEW ARTICLES
Authors

Oluwaseun Ajala

Damian Onwudiwe 0000-0002-2689-3981

Samuel Ogunniyi 0000-0003-3824-4273

Setyo Burdi Kurniawan 0000-0002-0791-1638

Olumide Esan 0000-0003-0578-7458

Oluwole Samuel Aremu This is me

Project Number Nil
Publication Date December 3, 2024
Submission Date November 14, 2023
Acceptance Date August 9, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Ajala O, Onwudiwe D, Ogunniyi S, Kurniawan SB, Esan O, Aremu OS. A Review of Different Synthesis Approaches to Nanoparticles: Bibliometric Profile. JOTCSA. 2024;11(4):1329-68.