Research Article
BibTex RIS Cite

Relationship between SSN, F107 and Z component of EMF during the 24th Solar Cycle

Year 2021, Volume: 4 Issue: 1, 39 - 43, 02.08.2021

Abstract

The study inquires the statistical relationship between Solar activity indices SSN, F10.7 and Earth’s Magnetic Field (EMF) Z component which were measured in Iznik Magnetic Observatory, for the 24th Solar Cycle. Pearson, Spearman and Kendall Tau-b correlation analysis were made according to the normality analysis of the values which was determined in accordance with skewness and kurtosis values. Low level of correlations with high significance were found between the variables.

Thanks

The results presented in this paper rely on the data collected at Iznik Geomagnetic Observatory. We thank Iznik Geomagnetic Observatory, for supporting its operation and INTERMAGNET for promoting high standards of magnetic observatory practice

References

  • [1] J. J. Love, “Magnetic monitoring of earth and space,” Phys. Today, vol. 61, no. 2, pp. 31–37, Feb. 2008, doi: 10.1063/1.2883907.
  • [2] O. Ozcan, S. Sağır and R. Atıcı “The Relationship between TEC and Earth's Magentic Field during Quiet and Disturbed days over Istanbul,Turkey” Advances in Space Research., vol. 65, no. 9, pp. 2167–2171, 2020, doi: 10.16/j.asr.2020.01.35
  • [3] L. B. Liu, W. X. Wan, Y. D. Chen, and H. J. Le, “Solar activity effects of the ionosphere: A brief review,” Chinese Sci. Bull., vol. 56, no. 12, pp. 1202–1211, 2011, doi: 10.1007/s11434-010-4226-9.
  • [4] M. Mandea and A. Chambodut, “Geomagnetic Field Processes and Their Implications for Space Weather,” Surv. Geophys., vol. 41, no. 6, pp. 1611–1627, 2020, doi: 10.1007/s10712-020-09598-1.
  • [5] G. Hulot, T. J. Sabaka, N. Olsen, and A. Fournier, “The Present and Future Geomagnetic Field,” in Treatise on Geophysics, vol. 5, Elsevier, 2015, pp. 33–78.
  • [6] C. C. Finlay, A. Jackson, N. Gillet, and N. Olsen, “Core surface magnetic field evolution 2000-2010,” Geophys. J. Int., vol. 189, no. 2, pp. 761–781, 2012, doi: 10.1111/j.1365-246X.2012.05395.x.
  • [7] U. R. Christensen, J. Aubert, and G. Hulot, “Conditions for Earth-like geodynamo models,” Earth Planet. Sci. Lett., vol. 296, no. 3–4, pp. 487–496, 2010, doi: 10.1016/j.epsl.2010.06.009.
  • [8] V. Lesur, S. Macmillan, and A. Thomson, “A magnetic field model with daily variations of the magnetospheric field and its induced counterpart in 2001,” Geophys. J. Int., vol. 160, no. 1, pp. 79–88, 2005, doi: 10.1111/j.1365-246X.2004.02479.x.
  • [9] R. A. Langel, T. J. Sabaka, R. T. Baldwin, and J. A. Conrad, “The near-Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled,” Phys. Earth Planet. Inter., vol. 98, no. 3-4 SPEC. ISS., pp. 235–267, 1996, doi: 10.1016/s0031-9201(96)03190-1.
  • [10] G. Hulot, C. C. Finlay, C. G. Constable, N. Olsen, and M. Mandea, “The magnetic field of planet earth,” Space Sci. Rev., vol. 152, no. 1–4, pp. 159–222, 2010, doi: 10.1007/s11214-010-9644-0.
  • [11] A. Conway, K. Macpherson, and J. Brown, “Predicting the maximum of solar cycle 23,” Astron. Geophys., vol. 39, no. 2, pp. 222–224, 1998, doi: 10.1093/astrog/39.2.2.22.
  • [12] M. O. F. Science, “Forecasting Solar Cycle 24 Using Neural Networks,” 2008.
  • [13] P. Charbonneau, Dynamo models of the solar cycle, vol. 17, no. 1. Springer International Publishing, 2020.
  • [14] David H. Hathaway, “The solar cycle,” Living Rev. Sol. Phys., vol. 12, no. 1, 2015, doi: 10.1007/lrsp-2015-4.
  • [15] NOAA, “NOAA-NASA Space Weather.” https://www.swpc.noaa.gov/phenomena/f107-cm-radio-emissions (accessed Feb. 25, 2020).
  • [16] “SILSO - 24th Solar Cycle Began.” http://sidc.be/silso/cyclesmm (accessed Feb. 15, 2021).
  • [17] “SILSO - 24th Solar Cycle Ended.” http://sidc.be/silso/node/167/#NewSolarActivity (accessed Feb. 15, 2021).
  • [18] “NASA- Omniweb.” https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed Feb. 19, 2021).
  • [19] A. Leguina, “A primer on partial least squares structural equation modeling (PLS-SEM),” Int. J. Res. Method Educ., vol. 38, no. 2, pp. 220–221, Apr. 2015, doi: 10.1080/1743727X.2015.1005806.
  • [20] F. İ. Ergül DEMİR, Özkan SAATÇİOĞLU, “Uluslararası Dergilerde Yayımlanan Eğitim Araştırmalarının Normallik Varsayımları Açısından İncelenmesi,” Curr. Res. Educ., vol. 2, no. 3, pp. 130–148, 2016,
  • [21] L. S. F. Barbara G. Tabachnick, Review of Using Multivariate Statistics., vol. 28, no. 8. 1983.
  • [22] L. Vinet and A. Zhedanov, “A ‘missing’ family of classical orthogonal polynomials,” Routledge, pp. 1–814, Nov. 2010, doi: 10.1088/1751-8113/44/8/085201.
  • [23] R. G. Dawson, B. & Trapp, “Basic & Clinical Biostatistics,” Basic Clin. Biostat., pp. 161–218, 2001.
  • [24] S. Arndt, C. Turvey, and N. C. Andreasen, “Correlating and predicting psychiatric symptom ratings: Spearman’s v versus Kendall’s tau correlation,” J. Psychiatr. Res., vol. 33, no. 2, pp. 97–104, 1999, doi: 10.1016/S0022-3956(98)90046-2.
  • [25] S. Kilic, “Interpretation of correlation analysis results,” J. Mood Disord., vol. 2, no. 4, p. 191, 2012, doi: 10.5455/jmood.20121209012824.
  • [26] “Intermagnet.” http://www.intermagnet.org (accessed Feb. 09, 2021).
Year 2021, Volume: 4 Issue: 1, 39 - 43, 02.08.2021

Abstract

References

  • [1] J. J. Love, “Magnetic monitoring of earth and space,” Phys. Today, vol. 61, no. 2, pp. 31–37, Feb. 2008, doi: 10.1063/1.2883907.
  • [2] O. Ozcan, S. Sağır and R. Atıcı “The Relationship between TEC and Earth's Magentic Field during Quiet and Disturbed days over Istanbul,Turkey” Advances in Space Research., vol. 65, no. 9, pp. 2167–2171, 2020, doi: 10.16/j.asr.2020.01.35
  • [3] L. B. Liu, W. X. Wan, Y. D. Chen, and H. J. Le, “Solar activity effects of the ionosphere: A brief review,” Chinese Sci. Bull., vol. 56, no. 12, pp. 1202–1211, 2011, doi: 10.1007/s11434-010-4226-9.
  • [4] M. Mandea and A. Chambodut, “Geomagnetic Field Processes and Their Implications for Space Weather,” Surv. Geophys., vol. 41, no. 6, pp. 1611–1627, 2020, doi: 10.1007/s10712-020-09598-1.
  • [5] G. Hulot, T. J. Sabaka, N. Olsen, and A. Fournier, “The Present and Future Geomagnetic Field,” in Treatise on Geophysics, vol. 5, Elsevier, 2015, pp. 33–78.
  • [6] C. C. Finlay, A. Jackson, N. Gillet, and N. Olsen, “Core surface magnetic field evolution 2000-2010,” Geophys. J. Int., vol. 189, no. 2, pp. 761–781, 2012, doi: 10.1111/j.1365-246X.2012.05395.x.
  • [7] U. R. Christensen, J. Aubert, and G. Hulot, “Conditions for Earth-like geodynamo models,” Earth Planet. Sci. Lett., vol. 296, no. 3–4, pp. 487–496, 2010, doi: 10.1016/j.epsl.2010.06.009.
  • [8] V. Lesur, S. Macmillan, and A. Thomson, “A magnetic field model with daily variations of the magnetospheric field and its induced counterpart in 2001,” Geophys. J. Int., vol. 160, no. 1, pp. 79–88, 2005, doi: 10.1111/j.1365-246X.2004.02479.x.
  • [9] R. A. Langel, T. J. Sabaka, R. T. Baldwin, and J. A. Conrad, “The near-Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled,” Phys. Earth Planet. Inter., vol. 98, no. 3-4 SPEC. ISS., pp. 235–267, 1996, doi: 10.1016/s0031-9201(96)03190-1.
  • [10] G. Hulot, C. C. Finlay, C. G. Constable, N. Olsen, and M. Mandea, “The magnetic field of planet earth,” Space Sci. Rev., vol. 152, no. 1–4, pp. 159–222, 2010, doi: 10.1007/s11214-010-9644-0.
  • [11] A. Conway, K. Macpherson, and J. Brown, “Predicting the maximum of solar cycle 23,” Astron. Geophys., vol. 39, no. 2, pp. 222–224, 1998, doi: 10.1093/astrog/39.2.2.22.
  • [12] M. O. F. Science, “Forecasting Solar Cycle 24 Using Neural Networks,” 2008.
  • [13] P. Charbonneau, Dynamo models of the solar cycle, vol. 17, no. 1. Springer International Publishing, 2020.
  • [14] David H. Hathaway, “The solar cycle,” Living Rev. Sol. Phys., vol. 12, no. 1, 2015, doi: 10.1007/lrsp-2015-4.
  • [15] NOAA, “NOAA-NASA Space Weather.” https://www.swpc.noaa.gov/phenomena/f107-cm-radio-emissions (accessed Feb. 25, 2020).
  • [16] “SILSO - 24th Solar Cycle Began.” http://sidc.be/silso/cyclesmm (accessed Feb. 15, 2021).
  • [17] “SILSO - 24th Solar Cycle Ended.” http://sidc.be/silso/node/167/#NewSolarActivity (accessed Feb. 15, 2021).
  • [18] “NASA- Omniweb.” https://omniweb.gsfc.nasa.gov/form/dx1.html (accessed Feb. 19, 2021).
  • [19] A. Leguina, “A primer on partial least squares structural equation modeling (PLS-SEM),” Int. J. Res. Method Educ., vol. 38, no. 2, pp. 220–221, Apr. 2015, doi: 10.1080/1743727X.2015.1005806.
  • [20] F. İ. Ergül DEMİR, Özkan SAATÇİOĞLU, “Uluslararası Dergilerde Yayımlanan Eğitim Araştırmalarının Normallik Varsayımları Açısından İncelenmesi,” Curr. Res. Educ., vol. 2, no. 3, pp. 130–148, 2016,
  • [21] L. S. F. Barbara G. Tabachnick, Review of Using Multivariate Statistics., vol. 28, no. 8. 1983.
  • [22] L. Vinet and A. Zhedanov, “A ‘missing’ family of classical orthogonal polynomials,” Routledge, pp. 1–814, Nov. 2010, doi: 10.1088/1751-8113/44/8/085201.
  • [23] R. G. Dawson, B. & Trapp, “Basic & Clinical Biostatistics,” Basic Clin. Biostat., pp. 161–218, 2001.
  • [24] S. Arndt, C. Turvey, and N. C. Andreasen, “Correlating and predicting psychiatric symptom ratings: Spearman’s v versus Kendall’s tau correlation,” J. Psychiatr. Res., vol. 33, no. 2, pp. 97–104, 1999, doi: 10.1016/S0022-3956(98)90046-2.
  • [25] S. Kilic, “Interpretation of correlation analysis results,” J. Mood Disord., vol. 2, no. 4, p. 191, 2012, doi: 10.5455/jmood.20121209012824.
  • [26] “Intermagnet.” http://www.intermagnet.org (accessed Feb. 09, 2021).
There are 26 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Murat Canyılmaz 0000-0002-4504-5750

Esat Guzel This is me 0000-0002-3281-5568

Emrah Yalcın 0000-0002-2290-2166

Publication Date August 2, 2021
Submission Date June 9, 2021
Acceptance Date June 21, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Canyılmaz, M., Guzel, E., & Yalcın, E. (2021). Relationship between SSN, F107 and Z component of EMF during the 24th Solar Cycle. Journal of Physical Chemistry and Functional Materials, 4(1), 39-43.
AMA Canyılmaz M, Guzel E, Yalcın E. Relationship between SSN, F107 and Z component of EMF during the 24th Solar Cycle. Journal of Physical Chemistry and Functional Materials. August 2021;4(1):39-43.
Chicago Canyılmaz, Murat, Esat Guzel, and Emrah Yalcın. “Relationship Between SSN, F107 and Z Component of EMF During the 24th Solar Cycle”. Journal of Physical Chemistry and Functional Materials 4, no. 1 (August 2021): 39-43.
EndNote Canyılmaz M, Guzel E, Yalcın E (August 1, 2021) Relationship between SSN, F107 and Z component of EMF during the 24th Solar Cycle. Journal of Physical Chemistry and Functional Materials 4 1 39–43.
IEEE M. Canyılmaz, E. Guzel, and E. Yalcın, “Relationship between SSN, F107 and Z component of EMF during the 24th Solar Cycle”, Journal of Physical Chemistry and Functional Materials, vol. 4, no. 1, pp. 39–43, 2021.
ISNAD Canyılmaz, Murat et al. “Relationship Between SSN, F107 and Z Component of EMF During the 24th Solar Cycle”. Journal of Physical Chemistry and Functional Materials 4/1 (August 2021), 39-43.
JAMA Canyılmaz M, Guzel E, Yalcın E. Relationship between SSN, F107 and Z component of EMF during the 24th Solar Cycle. Journal of Physical Chemistry and Functional Materials. 2021;4:39–43.
MLA Canyılmaz, Murat et al. “Relationship Between SSN, F107 and Z Component of EMF During the 24th Solar Cycle”. Journal of Physical Chemistry and Functional Materials, vol. 4, no. 1, 2021, pp. 39-43.
Vancouver Canyılmaz M, Guzel E, Yalcın E. Relationship between SSN, F107 and Z component of EMF during the 24th Solar Cycle. Journal of Physical Chemistry and Functional Materials. 2021;4(1):39-43.