Review
BibTex RIS Cite

Year 2024, Volume: 28 Issue: 6, 1921 - 1935, 28.06.2025
https://doi.org/10.29228/jrp.865

Abstract

References

  • [1] Agarwal, Bajpai M. Nanosuspension technology for poorly soluble drugs: recent researches, advances and patents. Recent Pat Nanotechnol. 2015;9:178–194. https://doi.org/10.2174/1872210510999151126112644.
  • [2] Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202. https://doi.org/10.1016/j.ijpharm.2019.02.045
  • [3] Srivalli KMR, Mishra B. Drug nanocrystals: A way toward scale-up. Saudi Pharm J. 2016;24(4):386–404. https://doi.org/10.1016/j.jsps.2014.04.007
  • [4] Huang F, Jiang X, Sallam MA, Zhang Q, He W. A nanocrystal platform based on metal-phenolic network wrapping for drug solubilization. AAPS PharmSciTech. 2022;23. https://doi.org/10.1208/s12249-022-02220-0
  • [5] Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharma Nanotechnol. 2019;7:259–278. https://doi.org/10.2174/2211738507666190405182524
  • [6] Yadollahi R, Vasilev K, Simović S. Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater. 2015;2015:1–13. https://doi.org/10.1155/2015/216375
  • [7] Raj H, Prasad SMC, Ujwala NP, Jagruti JP, Rajendra K. Nanosuspension a promising tool for solubility enhancement: A review. Asian J Pharm Technol. 2021;252–258. https://doi.org/10.52711/2231-5713.2021.00042
  • [8] Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B: Biointerfaces. 2013;108:366–373. https://doi.org/10.1016/j.colsurfb.2013.02.043
  • [9] Phuna ZX, Panda BP, Shivashekaregowda NKH, Madhavan P. Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. J Drug Deliv Sci Technol. 2022;68:102921. https://doi.org/10.1016/j.jddst.2021.102921
  • [10] Liu J, Tu L, Cheng M, Jiao F. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Technol. 2020;56:101607. https://doi.org/10.1016/j.jddst.2020.101607
  • [11] Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng Transl Med. 2018;4:5–16. https://doi.org/10.1002/btm2.10122
  • [12] Peltonen L, Hirvonen J. Drug nanocrystals – Versatile option for formulation of poorly soluble materials. Int J Pharm. 2018;537:73–83. https://doi.org/10.1016/j.ijpharm.2017.12.005
  • [13] Tuomela A, Saarinen J, Strachan CJ, Hirvonen J, Peltonen L. Production, applications and in vivo fate of drug nanocrystals. J Drug Deliv Sci Technol. 2016;34:21–31. https://doi.org/10.1016/j.jddst.2016.02.006
  • [14] Pardhi V, Verma T, Flora SJS, Chandasana H, Shukla R. Nanocrystals: An overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharm Des. 2019;24:5129–5146. https://doi.org/10.2174/1381612825666190215121148
  • [15] Aher SS, Malsane ST, Saudagar RB. Nanosuspension: An overview. Asian J Res Pharm Sci. 2017;7:81. https://doi.org/10.5958/2231-5659.2017.00012.1
  • [16] Patel V, Sharma OP, Mehta T. Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv. 2018;15:351–368. https://doi.org/10.1080/17425247.2018.1444025
  • [17] Mirza RM. A nanocrystal technology: to enhance solubility of poorly water soluble drugs. J Appl Pharm Res. 2017; 5(1): 1-13. https://www.japtronline.com/index.php/joapr/article/view/69
  • [18] Peltonen L, Hirvonen J. Drug nanocrystals – Versatile option for formulation of poorly soluble materials. Int J Pharm. 2018;537:73–83. https://doi.org/10.1016/j.ijpharm.2017.12.005
  • [19] Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10:13–23. https://doi.org/10.1016/j.ajps.2014.08.005
  • [20] Guo M, Qin S, Wang S, Sun M, Yang H, Wang X, Fan P, Jin Z. Herbal medicine nanocrystals: A potential novel therapeutic strategy. Molecules. 2023;28:6370. https://doi.org/10.3390/molecules28176370
  • [21] Zhang G, Sun G, Guan H, Li M, Liu Y, Tian B, He Z, Fu Q.. Naringenin nanocrystals for improving anti-rheumatoid arthritis activity. Asian J Pharm Sci. 2021;16:816–825. https://doi.org/10.1016/j.ajps.2021.09.001 [22] Ali SW, Sharma V. Drug nanocrystals: emerging trends in pharmaceutical industries. In: Elsevier eBooks.. 2022. p. 97–115. https://doi.org/10.1016/b978-0-12-824024-3.00005-1
  • [23] Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453:142–156. https://doi.org/10.1016/j.ijpharm.2012.09.034
  • [24] Pinar SG, Oktay AN, Karaküçük A, Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics. 2023;15:1520. https://doi.org/10.3390/pharmaceutics15051520
  • [25] Couillaud BM, Espeau P, Mignet N, Corvis Y. State of the art of pharmaceutical solid forms: From crystal property ıssues to nanocrystals formulation. ChemMedChem.. 2018;14:8–23. https://doi.org/10.1002/cmdc.201800612
  • [26] Acartürk F, Ağabeyoğlu İ, Çelebi N, Değim T. Modern Farmasötik Teknoloji. Değim, Z. Öğütme. 1st ed. Ankara: Türk Eczacıları Birliği Eczacılık Akademisi Yayını, Fersa Matbaacılık Ltd. Şti.Press; 2006. p.1-7.
  • [27] Chogale M, Gite S, Patravale V. Comparison of media milling and microfluidization methods for engineering of nanocrystals: a case study. Drug Develop Indust Pharm. 2020;46:1763–1775. https://doi.org/10.1080/03639045.2020.1821046
  • [28] Luo S, Chen Y, Xu W, Wei J, Li Z, Huang S, Huang H, Zhang J, Yu Q. Effects of typical solvents on the structural ıntegrity and properties of activated kaolinite by wet ball milling. Nanomaterials (Basel). 2022 Nov 29;12(23):4255. https://doi.org/10.3390/nano12234255
  • [29] Saini JK, Sandeep K. Development of nanocrystal formulation with improved dissolution. J Drug Deliv Ther. 2018;8:118–129. https://doi.org/10.22270/jddt.v8i5.1946
  • [30] Khan BA, Rashid F, Khan MK, Alqahtani SS, Sultan MH, Almoshari Y. Fabrication of capsaicin loaded nanocrystals: Physical characterizations and ın vivo evaluation. Pharmaceutics. 2021;13:841. https://doi.org/10.3390/pharmaceutics13060841
  • [31] Li J, Wang Z, Zhang H, Gao J, Zheng A. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2020;28:19–36. https://doi.org/10.1080/10717544.2020.1856224
  • [32] Sofiah AGN, Pasupuleti J, Samykano M, Kadirgama K, Koh SP, Tiong SK, Pandey AK, Yaw CT, Natarajan SK. Harnessing Nature's Ingenuity: A comprehensive exploration of nanocellulose from production to cutting-edge applications in engineering and sciences. Polymers (Basel). 2023;15(14):3044. https://doi.org/10.3390/polym15143044
  • [33] Parmar PK, Bansal AK. Novel nanocrystal-based formulations of apremilast for improved topical delivery. Drug Deliv Transl Res. 2020;11:966–983. https://doi.org/10.1007/s13346-020-00809-1
  • [34] McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, Paredes AJ. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release. 2022;345:334-353. https://doi.org/10.1016/j.jconrel.2022.03.012
  • [35] Rashid AB, Hoque ME, Kabir N, Rifat FF, Ishrak H, Alqahtani A, Chowdhury MEH. Synthesis, Properties, applications, and future prospective of cellulose nanocrystals. Polymers (Basel). 2023;15(20):4070. https://doi.org/10.3390/polym15204070
  • [36] Ma Y, Yang X, Chen G, Zhang Y, Zhang H, Zhang W. Effect of particle size on the oral absorption of isoliquiritigenin nanocrystals. Braz J Pharm Sci. 2022;58. https://doi.org/10.1590/s2175-97902022e201186
  • [37] Chang TL, Zhan H, Liang D, Liang J. Nanocrystal technology for drug formulation and delivery. Front Chem Sci Eng. 2015;9:1–14. https://doi.org/10.1007/s11705-015-1509-3
  • [38] Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6(4):399-413. https://doi.org/10.1007/s13346-016-0292-0
  • [39] Malamatari M, Taylor K, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov Today. 2018;23:534–547. https://doi.org/10.1016/j.drudis.2018.01.016
  • [40] Peters K. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chem. 2000;45:77–83. https://doi.org/10.1093/jac/45.1.77
  • [41] Paredes AJ, Litterio N, Dib A, Allemandi DA, Lanusse C, Bruni SS, Palma SD. A nanocrystal-based formulation improves the pharmacokinetic performance and therapeutic response of albendazole in dogs. J Pharm Pharmacol. 2018;70(1):51-58. https://doi.org/10.1111/jphp.12834
  • [42] Guo M, Wei M, Li W, Guo M, Guo C, Ma M, Wang Y, Yang Z, Li M, Fu Q, Yang L, He Z. Impacts of particle shapes on the oral delivery of drug nanocrystals: Mucus permeation, transepithelial transport and bioavailability. J Control Release. 2019;307:64-75. https://doi.org/10.1016/j.jconrel.2019.06.015
  • [43] Shen B, Shen C, Zhu W, Yuan H. The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin. Acta Pharm Sin B. 2021;11:978–988. https://doi.org/10.1016/j.apsb.2021.02.015
  • [44] Zhang G, Wang Y, Zhang Z, Zhang H, Yang L, Fu Q. FRET imaging revealed that nanocrystals enhanced drug oral absorption by dissolution rather than endocytosis: A case study of coumarin 6. J Control Release. 2021;332:225–232. https://doi.org/10.1016/j.jconrel.2021.02.025
  • [45] Melian ME, Paredes A, Munguía B, Colobbio M, Ramos JC, Teixeira R, Manta E, Palma S, Faccio R, Domínguez L. Nanocrystals of novel valerolactam-fenbendazole hybrid with ımproved in vitro dissolution performance. AAPS PharmSciTech. 2020;21(7):237. https://doi.org/10.1208/s12249-020-01777-y
  • [46] Zhu Y, Fu Y, Zhang A, Wang X, Zhao Z, Zhang Y, Yin T, Gou J, Wang Y, He H, Tang X. Rod-shaped nintedanib nanocrystals improved oral bioavailability through multiple intestinal absorption pathways. Eur J Pharm Sci. 2022;168:106047. https://doi.org/10.1016/j.ejps.2021.106047
  • [47] Yi T, Liu C, Zhang J, Wang F, Wang J, Zhang J. A new drug nanocrystal self-stabilized Pickering emulsion for oral delivery of silybin. Eur J Pharm Sci. 2017;96:420–427. https://doi.org/10.1016/j.ejps.2016.08.047
  • [48] Wang Y, Xuan J, Zhao G, Wang D, Ying N, Zhuang J. Improving stability and oral bioavailability of hydroxycamptothecin via nanocrystals in microparticles (NCs/MPs) technology. Int J Pharm. 2021;604:120729. https://doi.org/10.1016/j.ijpharm.2021.120729
  • [49] Paredes AJ, Camacho NM, Schofs L, Dib A, Zarazaga MDP, Litterio N, Allemandi DA, Sánchez Bruni S, Lanusse C, Palma SD. Ricobendazole nanocrystals obtained by media milling and spray drying: Pharmacokinetic comparison with the micronized form of the drug. Int J Pharm. 2020;585:119501. https://doi.org/10.1016/j.ijpharm.2020.119501
  • [50] Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10:134. https://doi.org/10.3390/pharmaceutics10030134
  • [51] Peters MCC, Santos Neto ED, Monteiro LM, Yukuyama MN, Machado MGM, de Oliveira IF, Zanin MHA, Löbenberg R, Bou-Chacra N. Advances in ophthalmic preparation: the role of drug nanocrystals and lipid-based nanosystems. J Drug Target. 2020;28(3):259-270. https://doi.org/10.1080/1061186x.2019.1663858
  • [52] Donia M, Osman R, Awad GAS, Mortada ND. Polypeptide and glycosaminoglycan polysaccharide as stabilizing polymers in nanocrystals for a safe ocular hypotensive effect. Int J Biol Macromol. 2020;162:1699–1710. https://doi.org/10.1016/j.ijbiomac.2020.07.306
  • [53] García-Millán E, Quintáns-Carballo M, Otero-Espinar FJ. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. Int J Pharm. 2017;525:226–236. https://doi.org/10.1016/j.ijpharm.2017.03.082
  • [54] Awad H, Rawas-Qalaji M, Hosary RE, Jagal J, Ahmed IS. Formulation and optimization of ivermectin nanocrystals for enhanced topical delivery. Int J Pharm X. 2023;6:100210. https://doi.org/10.1016/j.ijpx.2023.100210
  • [55] Oktay AN, Ilbasmiş-Tamer S, Uludağ O, Çelebi N. Enhanced dermal delivery of flurbiprofen nanosuspension based gel: Development and ex vivo permeation, pharmacokinetic evaluations. Pharm Res. 2021;38:991–1009. https://doi.org/10.1007/s11095-021-03060-6
  • [56] Shen C, Shen B, Liu X, Yuan H. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. J Drug Deliv Sci Technol. 2018;43:1–11. https://doi.org/10.1016/j.jddst.2017.09.012
  • [57] Oktay AN, Karaküçük A, Ilbasmiş-Tamer S, Çelebi N. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci. 2018;122:254–263. https://doi.org/10.1016/j.ejps.2018.07.009
  • [58] Kumar M, Pacák K, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv. 2020;17:1459–1472. https://doi.org/10.1080/17425247.2020.1798401
  • [59] Jacobs C, Kayser O, Müller RH. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm. 2000;196:161–164. https://doi.org/10.1016/s0378-5173(99)00412-3
  • [60] Tian X, Li H, Zhang D, Liu G, Jia L, Zheng D, Shen J, Shen Y, Zhang Q. Nanosuspension for parenteral delivery of a p-terphenyl derivative: preparation, characteristics and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;108:29-33. https://doi.org/10.1016/j.colsurfb.2013.02.038
  • [61] Chen L, Wang Y, Zhang J, Hao L, Guo H, Lou H, Zhang D. Bexarotene nanocrystal-Oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur J Pharm Biopharm. 2014;87(1):160-169. https://doi.org/10.1016/j.ejpb.2013.12.005
  • [62] Chen D, Yun X, Lee D, DiCostanzo JR, Donini O, Shikuma CM, Thompson K, Lehrer AT, Shimoda L, Suk JS. Telmisartan Nanosuspension for Inhaled Therapy of COVID-19 Lung Disease and Other Respiratory Infections. Mol Pharm. 2023;20(1):750-757. https://doi.org/10.1021/acs.molpharmaceut.2c00448
  • [63] Casula L, Lai F, Pini E, Valenti D, Sinico C, Cardia MC, Marceddu S, Ailuno G, Fadda AM. Pulmonary delivery of curcumin and beclomethasone dipropionate in a multicomponent nanosuspension for the treatment of bronchial asthma. Pharmaceutics. 2021;13(8):1300. https://doi.org/10.3390/pharmaceutics13081300
  • [64] Fu TT, Cong ZQ, Zhao Y, Chen WY, Liu CY, Zheng Y, Yang FF, Liao YH. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation. Int J Pharm. 2019;572:118839. https://doi.org/10.1016/j.ijpharm.2019.118839
  • [65] Akdag Y, Gulsun T, Izat N, Oner L, Sahin S. Formulation and characterization of mometasone furoate and formoterol fumarate containing dry powder inhaler by spray drying and homogenization methods. J Res Pharm. 2022;26 (2):383–396. https://doi.org/10.29228/jrp.136
  • [66] Alshweiat A, Katona G, Csóka I, Ambrus R. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci. 2018;122:94–104. https://doi.org/10.1016/j.ejps.2018.06.010
  • [67] Wang J, Muhammad N, Li T, Wang H, Liu Y, Liu B, Zhan H. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol Pharm. 2020;17(7):2411-2425. https://doi.org/10.1021/acs.molpharmaceut.0c00161.
  • [68] Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–2387. https://doi.org/10.1007/s11095-016-1958-5
  • [69] Caster JM, Patel AN, Zhang T, Wang AZ. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. WIREs Nanomed Nanobiotechnol. 2016;9. https://doi.org/10.1002/wnan.1416
  • [70] Jahangir MA, Imam SS, Muheem A, Chettupalli AK, Al-Abbasi FA, Nadeem MS, Kazmi I, Afzal M, Al Shehri S. Nanocrystals: Characterization Overview, Applications in drug delivery, and their toxicity concerns. J Pharm Innov. 2020;17:237–248. https://doi.org/10.1007/s12247-020-09499-1

Nanocrystals and their applications in pharmaceutical technology: An up-to-date overview

Year 2024, Volume: 28 Issue: 6, 1921 - 1935, 28.06.2025
https://doi.org/10.29228/jrp.865

Abstract

Due to their poor solubility and poor bioavailability, the majority of recently produced novel chemical entities pose significant challenges in the formulation and development of new dosage forms. The pharmaceuticals in Biopharmaceutical Classification System (BCS) classes II and IV have a solubility issue; nanotechnology is the most effective solution to this issue. The preparation of nanocrystals and the numerous methods utilized to create them are the major topics of this review article. Since there is no matrix material present in drug nanocrystals, they are a carrier-free form of drug delivery. For pharmaceuticals in BCS classes II and IV, nanocrystal technologies have been suggested as beneficial, all-purpose formulation methods. The dissolving rate and saturation solubility of active agent can be efficiently increased by nanocrystals because of their higher surface to volume ratio. Major used routes of administration, including oral, IV, SC, IM, and topical administration are acceptable for the nanocrystals drug delivery system. For use in sterile products, nanocrystals can also be added to tablets, capsules, quick melts, and lyophilized materials. Precipitation, milling, high pressure homogenization, and combination methods like Nano-EdgeTM, SmartCrystal® are just a few of the production techniques employed today.

References

  • [1] Agarwal, Bajpai M. Nanosuspension technology for poorly soluble drugs: recent researches, advances and patents. Recent Pat Nanotechnol. 2015;9:178–194. https://doi.org/10.2174/1872210510999151126112644.
  • [2] Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202. https://doi.org/10.1016/j.ijpharm.2019.02.045
  • [3] Srivalli KMR, Mishra B. Drug nanocrystals: A way toward scale-up. Saudi Pharm J. 2016;24(4):386–404. https://doi.org/10.1016/j.jsps.2014.04.007
  • [4] Huang F, Jiang X, Sallam MA, Zhang Q, He W. A nanocrystal platform based on metal-phenolic network wrapping for drug solubilization. AAPS PharmSciTech. 2022;23. https://doi.org/10.1208/s12249-022-02220-0
  • [5] Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharma Nanotechnol. 2019;7:259–278. https://doi.org/10.2174/2211738507666190405182524
  • [6] Yadollahi R, Vasilev K, Simović S. Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater. 2015;2015:1–13. https://doi.org/10.1155/2015/216375
  • [7] Raj H, Prasad SMC, Ujwala NP, Jagruti JP, Rajendra K. Nanosuspension a promising tool for solubility enhancement: A review. Asian J Pharm Technol. 2021;252–258. https://doi.org/10.52711/2231-5713.2021.00042
  • [8] Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B: Biointerfaces. 2013;108:366–373. https://doi.org/10.1016/j.colsurfb.2013.02.043
  • [9] Phuna ZX, Panda BP, Shivashekaregowda NKH, Madhavan P. Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. J Drug Deliv Sci Technol. 2022;68:102921. https://doi.org/10.1016/j.jddst.2021.102921
  • [10] Liu J, Tu L, Cheng M, Jiao F. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Technol. 2020;56:101607. https://doi.org/10.1016/j.jddst.2020.101607
  • [11] Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng Transl Med. 2018;4:5–16. https://doi.org/10.1002/btm2.10122
  • [12] Peltonen L, Hirvonen J. Drug nanocrystals – Versatile option for formulation of poorly soluble materials. Int J Pharm. 2018;537:73–83. https://doi.org/10.1016/j.ijpharm.2017.12.005
  • [13] Tuomela A, Saarinen J, Strachan CJ, Hirvonen J, Peltonen L. Production, applications and in vivo fate of drug nanocrystals. J Drug Deliv Sci Technol. 2016;34:21–31. https://doi.org/10.1016/j.jddst.2016.02.006
  • [14] Pardhi V, Verma T, Flora SJS, Chandasana H, Shukla R. Nanocrystals: An overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharm Des. 2019;24:5129–5146. https://doi.org/10.2174/1381612825666190215121148
  • [15] Aher SS, Malsane ST, Saudagar RB. Nanosuspension: An overview. Asian J Res Pharm Sci. 2017;7:81. https://doi.org/10.5958/2231-5659.2017.00012.1
  • [16] Patel V, Sharma OP, Mehta T. Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv. 2018;15:351–368. https://doi.org/10.1080/17425247.2018.1444025
  • [17] Mirza RM. A nanocrystal technology: to enhance solubility of poorly water soluble drugs. J Appl Pharm Res. 2017; 5(1): 1-13. https://www.japtronline.com/index.php/joapr/article/view/69
  • [18] Peltonen L, Hirvonen J. Drug nanocrystals – Versatile option for formulation of poorly soluble materials. Int J Pharm. 2018;537:73–83. https://doi.org/10.1016/j.ijpharm.2017.12.005
  • [19] Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10:13–23. https://doi.org/10.1016/j.ajps.2014.08.005
  • [20] Guo M, Qin S, Wang S, Sun M, Yang H, Wang X, Fan P, Jin Z. Herbal medicine nanocrystals: A potential novel therapeutic strategy. Molecules. 2023;28:6370. https://doi.org/10.3390/molecules28176370
  • [21] Zhang G, Sun G, Guan H, Li M, Liu Y, Tian B, He Z, Fu Q.. Naringenin nanocrystals for improving anti-rheumatoid arthritis activity. Asian J Pharm Sci. 2021;16:816–825. https://doi.org/10.1016/j.ajps.2021.09.001 [22] Ali SW, Sharma V. Drug nanocrystals: emerging trends in pharmaceutical industries. In: Elsevier eBooks.. 2022. p. 97–115. https://doi.org/10.1016/b978-0-12-824024-3.00005-1
  • [23] Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453:142–156. https://doi.org/10.1016/j.ijpharm.2012.09.034
  • [24] Pinar SG, Oktay AN, Karaküçük A, Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics. 2023;15:1520. https://doi.org/10.3390/pharmaceutics15051520
  • [25] Couillaud BM, Espeau P, Mignet N, Corvis Y. State of the art of pharmaceutical solid forms: From crystal property ıssues to nanocrystals formulation. ChemMedChem.. 2018;14:8–23. https://doi.org/10.1002/cmdc.201800612
  • [26] Acartürk F, Ağabeyoğlu İ, Çelebi N, Değim T. Modern Farmasötik Teknoloji. Değim, Z. Öğütme. 1st ed. Ankara: Türk Eczacıları Birliği Eczacılık Akademisi Yayını, Fersa Matbaacılık Ltd. Şti.Press; 2006. p.1-7.
  • [27] Chogale M, Gite S, Patravale V. Comparison of media milling and microfluidization methods for engineering of nanocrystals: a case study. Drug Develop Indust Pharm. 2020;46:1763–1775. https://doi.org/10.1080/03639045.2020.1821046
  • [28] Luo S, Chen Y, Xu W, Wei J, Li Z, Huang S, Huang H, Zhang J, Yu Q. Effects of typical solvents on the structural ıntegrity and properties of activated kaolinite by wet ball milling. Nanomaterials (Basel). 2022 Nov 29;12(23):4255. https://doi.org/10.3390/nano12234255
  • [29] Saini JK, Sandeep K. Development of nanocrystal formulation with improved dissolution. J Drug Deliv Ther. 2018;8:118–129. https://doi.org/10.22270/jddt.v8i5.1946
  • [30] Khan BA, Rashid F, Khan MK, Alqahtani SS, Sultan MH, Almoshari Y. Fabrication of capsaicin loaded nanocrystals: Physical characterizations and ın vivo evaluation. Pharmaceutics. 2021;13:841. https://doi.org/10.3390/pharmaceutics13060841
  • [31] Li J, Wang Z, Zhang H, Gao J, Zheng A. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2020;28:19–36. https://doi.org/10.1080/10717544.2020.1856224
  • [32] Sofiah AGN, Pasupuleti J, Samykano M, Kadirgama K, Koh SP, Tiong SK, Pandey AK, Yaw CT, Natarajan SK. Harnessing Nature's Ingenuity: A comprehensive exploration of nanocellulose from production to cutting-edge applications in engineering and sciences. Polymers (Basel). 2023;15(14):3044. https://doi.org/10.3390/polym15143044
  • [33] Parmar PK, Bansal AK. Novel nanocrystal-based formulations of apremilast for improved topical delivery. Drug Deliv Transl Res. 2020;11:966–983. https://doi.org/10.1007/s13346-020-00809-1
  • [34] McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, Paredes AJ. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release. 2022;345:334-353. https://doi.org/10.1016/j.jconrel.2022.03.012
  • [35] Rashid AB, Hoque ME, Kabir N, Rifat FF, Ishrak H, Alqahtani A, Chowdhury MEH. Synthesis, Properties, applications, and future prospective of cellulose nanocrystals. Polymers (Basel). 2023;15(20):4070. https://doi.org/10.3390/polym15204070
  • [36] Ma Y, Yang X, Chen G, Zhang Y, Zhang H, Zhang W. Effect of particle size on the oral absorption of isoliquiritigenin nanocrystals. Braz J Pharm Sci. 2022;58. https://doi.org/10.1590/s2175-97902022e201186
  • [37] Chang TL, Zhan H, Liang D, Liang J. Nanocrystal technology for drug formulation and delivery. Front Chem Sci Eng. 2015;9:1–14. https://doi.org/10.1007/s11705-015-1509-3
  • [38] Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6(4):399-413. https://doi.org/10.1007/s13346-016-0292-0
  • [39] Malamatari M, Taylor K, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov Today. 2018;23:534–547. https://doi.org/10.1016/j.drudis.2018.01.016
  • [40] Peters K. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chem. 2000;45:77–83. https://doi.org/10.1093/jac/45.1.77
  • [41] Paredes AJ, Litterio N, Dib A, Allemandi DA, Lanusse C, Bruni SS, Palma SD. A nanocrystal-based formulation improves the pharmacokinetic performance and therapeutic response of albendazole in dogs. J Pharm Pharmacol. 2018;70(1):51-58. https://doi.org/10.1111/jphp.12834
  • [42] Guo M, Wei M, Li W, Guo M, Guo C, Ma M, Wang Y, Yang Z, Li M, Fu Q, Yang L, He Z. Impacts of particle shapes on the oral delivery of drug nanocrystals: Mucus permeation, transepithelial transport and bioavailability. J Control Release. 2019;307:64-75. https://doi.org/10.1016/j.jconrel.2019.06.015
  • [43] Shen B, Shen C, Zhu W, Yuan H. The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin. Acta Pharm Sin B. 2021;11:978–988. https://doi.org/10.1016/j.apsb.2021.02.015
  • [44] Zhang G, Wang Y, Zhang Z, Zhang H, Yang L, Fu Q. FRET imaging revealed that nanocrystals enhanced drug oral absorption by dissolution rather than endocytosis: A case study of coumarin 6. J Control Release. 2021;332:225–232. https://doi.org/10.1016/j.jconrel.2021.02.025
  • [45] Melian ME, Paredes A, Munguía B, Colobbio M, Ramos JC, Teixeira R, Manta E, Palma S, Faccio R, Domínguez L. Nanocrystals of novel valerolactam-fenbendazole hybrid with ımproved in vitro dissolution performance. AAPS PharmSciTech. 2020;21(7):237. https://doi.org/10.1208/s12249-020-01777-y
  • [46] Zhu Y, Fu Y, Zhang A, Wang X, Zhao Z, Zhang Y, Yin T, Gou J, Wang Y, He H, Tang X. Rod-shaped nintedanib nanocrystals improved oral bioavailability through multiple intestinal absorption pathways. Eur J Pharm Sci. 2022;168:106047. https://doi.org/10.1016/j.ejps.2021.106047
  • [47] Yi T, Liu C, Zhang J, Wang F, Wang J, Zhang J. A new drug nanocrystal self-stabilized Pickering emulsion for oral delivery of silybin. Eur J Pharm Sci. 2017;96:420–427. https://doi.org/10.1016/j.ejps.2016.08.047
  • [48] Wang Y, Xuan J, Zhao G, Wang D, Ying N, Zhuang J. Improving stability and oral bioavailability of hydroxycamptothecin via nanocrystals in microparticles (NCs/MPs) technology. Int J Pharm. 2021;604:120729. https://doi.org/10.1016/j.ijpharm.2021.120729
  • [49] Paredes AJ, Camacho NM, Schofs L, Dib A, Zarazaga MDP, Litterio N, Allemandi DA, Sánchez Bruni S, Lanusse C, Palma SD. Ricobendazole nanocrystals obtained by media milling and spray drying: Pharmacokinetic comparison with the micronized form of the drug. Int J Pharm. 2020;585:119501. https://doi.org/10.1016/j.ijpharm.2020.119501
  • [50] Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10:134. https://doi.org/10.3390/pharmaceutics10030134
  • [51] Peters MCC, Santos Neto ED, Monteiro LM, Yukuyama MN, Machado MGM, de Oliveira IF, Zanin MHA, Löbenberg R, Bou-Chacra N. Advances in ophthalmic preparation: the role of drug nanocrystals and lipid-based nanosystems. J Drug Target. 2020;28(3):259-270. https://doi.org/10.1080/1061186x.2019.1663858
  • [52] Donia M, Osman R, Awad GAS, Mortada ND. Polypeptide and glycosaminoglycan polysaccharide as stabilizing polymers in nanocrystals for a safe ocular hypotensive effect. Int J Biol Macromol. 2020;162:1699–1710. https://doi.org/10.1016/j.ijbiomac.2020.07.306
  • [53] García-Millán E, Quintáns-Carballo M, Otero-Espinar FJ. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. Int J Pharm. 2017;525:226–236. https://doi.org/10.1016/j.ijpharm.2017.03.082
  • [54] Awad H, Rawas-Qalaji M, Hosary RE, Jagal J, Ahmed IS. Formulation and optimization of ivermectin nanocrystals for enhanced topical delivery. Int J Pharm X. 2023;6:100210. https://doi.org/10.1016/j.ijpx.2023.100210
  • [55] Oktay AN, Ilbasmiş-Tamer S, Uludağ O, Çelebi N. Enhanced dermal delivery of flurbiprofen nanosuspension based gel: Development and ex vivo permeation, pharmacokinetic evaluations. Pharm Res. 2021;38:991–1009. https://doi.org/10.1007/s11095-021-03060-6
  • [56] Shen C, Shen B, Liu X, Yuan H. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. J Drug Deliv Sci Technol. 2018;43:1–11. https://doi.org/10.1016/j.jddst.2017.09.012
  • [57] Oktay AN, Karaküçük A, Ilbasmiş-Tamer S, Çelebi N. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci. 2018;122:254–263. https://doi.org/10.1016/j.ejps.2018.07.009
  • [58] Kumar M, Pacák K, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv. 2020;17:1459–1472. https://doi.org/10.1080/17425247.2020.1798401
  • [59] Jacobs C, Kayser O, Müller RH. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm. 2000;196:161–164. https://doi.org/10.1016/s0378-5173(99)00412-3
  • [60] Tian X, Li H, Zhang D, Liu G, Jia L, Zheng D, Shen J, Shen Y, Zhang Q. Nanosuspension for parenteral delivery of a p-terphenyl derivative: preparation, characteristics and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;108:29-33. https://doi.org/10.1016/j.colsurfb.2013.02.038
  • [61] Chen L, Wang Y, Zhang J, Hao L, Guo H, Lou H, Zhang D. Bexarotene nanocrystal-Oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur J Pharm Biopharm. 2014;87(1):160-169. https://doi.org/10.1016/j.ejpb.2013.12.005
  • [62] Chen D, Yun X, Lee D, DiCostanzo JR, Donini O, Shikuma CM, Thompson K, Lehrer AT, Shimoda L, Suk JS. Telmisartan Nanosuspension for Inhaled Therapy of COVID-19 Lung Disease and Other Respiratory Infections. Mol Pharm. 2023;20(1):750-757. https://doi.org/10.1021/acs.molpharmaceut.2c00448
  • [63] Casula L, Lai F, Pini E, Valenti D, Sinico C, Cardia MC, Marceddu S, Ailuno G, Fadda AM. Pulmonary delivery of curcumin and beclomethasone dipropionate in a multicomponent nanosuspension for the treatment of bronchial asthma. Pharmaceutics. 2021;13(8):1300. https://doi.org/10.3390/pharmaceutics13081300
  • [64] Fu TT, Cong ZQ, Zhao Y, Chen WY, Liu CY, Zheng Y, Yang FF, Liao YH. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation. Int J Pharm. 2019;572:118839. https://doi.org/10.1016/j.ijpharm.2019.118839
  • [65] Akdag Y, Gulsun T, Izat N, Oner L, Sahin S. Formulation and characterization of mometasone furoate and formoterol fumarate containing dry powder inhaler by spray drying and homogenization methods. J Res Pharm. 2022;26 (2):383–396. https://doi.org/10.29228/jrp.136
  • [66] Alshweiat A, Katona G, Csóka I, Ambrus R. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci. 2018;122:94–104. https://doi.org/10.1016/j.ejps.2018.06.010
  • [67] Wang J, Muhammad N, Li T, Wang H, Liu Y, Liu B, Zhan H. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol Pharm. 2020;17(7):2411-2425. https://doi.org/10.1021/acs.molpharmaceut.0c00161.
  • [68] Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–2387. https://doi.org/10.1007/s11095-016-1958-5
  • [69] Caster JM, Patel AN, Zhang T, Wang AZ. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. WIREs Nanomed Nanobiotechnol. 2016;9. https://doi.org/10.1002/wnan.1416
  • [70] Jahangir MA, Imam SS, Muheem A, Chettupalli AK, Al-Abbasi FA, Nadeem MS, Kazmi I, Afzal M, Al Shehri S. Nanocrystals: Characterization Overview, Applications in drug delivery, and their toxicity concerns. J Pharm Innov. 2020;17:237–248. https://doi.org/10.1007/s12247-020-09499-1
There are 69 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Delivery Technologies
Journal Section Articles
Authors

Armıneh Deljavan Ghodratı 0009-0007-9814-2232

Ceyda Sengel-turk 0000-0003-4123-7226

Publication Date June 28, 2025
Submission Date January 4, 2024
Acceptance Date March 26, 2024
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Deljavan Ghodratı, A., & Sengel-turk, C. (2025). Nanocrystals and their applications in pharmaceutical technology: An up-to-date overview. Journal of Research in Pharmacy, 28(6), 1921-1935. https://doi.org/10.29228/jrp.865
AMA Deljavan Ghodratı A, Sengel-turk C. Nanocrystals and their applications in pharmaceutical technology: An up-to-date overview. J. Res. Pharm. July 2025;28(6):1921-1935. doi:10.29228/jrp.865
Chicago Deljavan Ghodratı, Armıneh, and Ceyda Sengel-turk. “Nanocrystals and Their Applications in Pharmaceutical Technology: An Up-to-Date Overview”. Journal of Research in Pharmacy 28, no. 6 (July 2025): 1921-35. https://doi.org/10.29228/jrp.865.
EndNote Deljavan Ghodratı A, Sengel-turk C (July 1, 2025) Nanocrystals and their applications in pharmaceutical technology: An up-to-date overview. Journal of Research in Pharmacy 28 6 1921–1935.
IEEE A. Deljavan Ghodratı and C. Sengel-turk, “Nanocrystals and their applications in pharmaceutical technology: An up-to-date overview”, J. Res. Pharm., vol. 28, no. 6, pp. 1921–1935, 2025, doi: 10.29228/jrp.865.
ISNAD Deljavan Ghodratı, Armıneh - Sengel-turk, Ceyda. “Nanocrystals and Their Applications in Pharmaceutical Technology: An Up-to-Date Overview”. Journal of Research in Pharmacy 28/6 (July2025), 1921-1935. https://doi.org/10.29228/jrp.865.
JAMA Deljavan Ghodratı A, Sengel-turk C. Nanocrystals and their applications in pharmaceutical technology: An up-to-date overview. J. Res. Pharm. 2025;28:1921–1935.
MLA Deljavan Ghodratı, Armıneh and Ceyda Sengel-turk. “Nanocrystals and Their Applications in Pharmaceutical Technology: An Up-to-Date Overview”. Journal of Research in Pharmacy, vol. 28, no. 6, 2025, pp. 1921-35, doi:10.29228/jrp.865.
Vancouver Deljavan Ghodratı A, Sengel-turk C. Nanocrystals and their applications in pharmaceutical technology: An up-to-date overview. J. Res. Pharm. 2025;28(6):1921-35.