Sağlık Bilimleri Öğrencilerinin Yapay Zeka Farkındalığı, Kullanımı ve Kaygı Düzeylerinin İncelenmesi
Year 2025,
Issue: Advanced Online Publication, 748 - 757
Onur Mutlu Yaşar
,
Egemen Mancı
,
Hazal Yakut Ozdemir
,
Hilal Bahcecioğlu
,
Gülseren Yürekli
Abstract
Yapay zekâ (YZ), sağlık alanını giderek daha fazla etkilemekte ve öğrencilerin bu konuda farkındalık, hazırlık ve tutum düzeylerinin değerlendirilmesini gerekli kılmaktadır. Bu araştırma, İzmir Demokrasi Üniversitesi Sağlık Bilimleri Fakültesi öğrencilerinin yapay zekâ farkındalığı, hazır bulunurluğu ve kaygı düzeylerini; cinsiyet, bölüm, yaş ve sınıf değişkenlerine göre incelemeyi amaçlamıştır. Kesitsel bir araştırma olarak yürütülen çalışmaya 328 lisans öğrencisi katılmıştır. Veriler, demografik sorular, Yapay Zekâ Hazırbulunuşluk Ölçeği ve Yapay Zekâ Kaygı Ölçeği ile toplanmıştır. Analizlerde tanımlayıcı istatistikler, Pearson korelasyon analizi, bağımsız örneklem t-testi ve tek yönlü ANOVA kullanılmıştır. Katılımcıların yarısından fazlası (%54,9) yapay zekâ uygulamaları hakkında sınırlı bilgiye sahip olduğunu belirtmiş, en yaygın bilgi kaynağı olarak sosyal medyayı göstermiştir. Öğrencilerin büyük bir kısmı (%82,6) yapay zekânın entegrasyonundan memnun olsa da %57’si kaygı yaşadığını bildirmiştir. Kadın öğrencilerin kaygı düzeyleri erkeklere kıyasla anlamlı biçimde yüksek bulunmuş; bölüm ve sınıf değişkenlerinin de hazırbulunuşluk ve kaygı üzerinde etkili olduğu görülmüştür. Buna karşın hazırbulunuşluk ile kaygı arasında anlamlı bir ilişki saptanmamıştır. Öğrencilerin yapay zekâya olan ilgisi yüksek olsa da, sınırlı biçimde verilen resmi eğitim, hazırbulunuşluk düzeyini kısıtlamaktadır. Bu nedenle, özellikle kadın öğrenciler ve kaygı düzeyi yüksek bölümlerdeki öğrenciler için yapay zekâ okuryazarlığını artırmaya ve kaygıyı azaltmaya yönelik yapılandırılmış ders içerikleri, disiplinler arası atölyeler ve hedefe yönelik müdahalelerin geliştirilmesi önerilmektedir.
References
-
Akşab, Ş., & Seggie, F. N. (2024). Yükseköğretimde yapay zekâ: Öğretim, araştırma ve topluma hizmet açısından bakış. Eğitimde Kuram ve Uygulama, 20(2), 29–45. https://doi.org/10.17244/eku.1457088
-
Balasa, K. A. (2025). Interplay of AI literacy, readiness-confidence, and acceptance among pre-service teachers in Philippine higher education: A gender, discipline, and connectivity perspective. EthAIca: Journal of Ethics, AI and Critical Analysis, 4, 429. https://doi.org/10.56294/ai2025429
-
Balasa, K. A., Dumagay, A. H., Alieto, E. O., & González Vallejo, R. (2025). Gender and age dynamics in future educators’ attitudes toward AI integration in education: A sample from state-managed universities in Zamboanga Peninsula, Philippines. Seminars in Medical Writing and Education, 4, 668. https://doi.org/10.56294/mw2025668
-
Başer Seçer, M. (2024). Sağlık alanında öğrenim gören üniversite öğrencilerinin sağlıkta yapay zeka uygulamaları ve ChatGPT farkındalığı, yapay zeka kullanımına yönelik görüşleri ve teknostres düzeylerinin incelenmesi: Kesitsel bir çalışma. Türkiye Klinikleri Journal of Health Sciences, 9(4), 856–866. https://doi.org/10.5336/healthsci.2024-104224
-
Birtchnell, T. (2018). Listening without ears: Artificial intelligence in audio mastering. Big Data & Society, 5(2), 2053951718808553. https://doi.org/10.1177/2053951718808553
-
Büyüköztürk, Ş. (2020). Sosyal bilimler için veri analizi el kitabı. Pegem Akademi.
-
Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-analysis. Computers & Education, 105, 1–13. https://doi.org/10.1016/j.compedu.2016.11.003
-
Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8
-
Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th ed.). Routledge.
-
Çelik, S., & Dönmez, İ. (2025). Üniversite öğrencilerinin yapay zekâya yönelik kaygı ve tutumlarının incelenmesi. Gazi Eğitim Bilimleri Dergisi, 11(2), 346–370.
-
El Arab, R. A., Alshakihs, A. H., Alabdulwahab, S. H., Almubarak, Y. S., Alkhalifah, S. S., Abdrbo, A., … Sagbakken, M. (2025). Artificial intelligence in nursing: A systematic review of attitudes, literacy, readiness, and adoption intentions among nursing students and practicing nurses. Frontiers in Digital Health, 7, 1666005. https://doi.org/10.3389/fdgth.2025.1666005
-
Deng, H., Jia, W., & Chai, D. (2022). Discussion on innovative methods of higher teacher education and training based on new artificial intelligence. Security and Communication Networks, 2022, 3899413, 1–10. https://doi.org/10.1155/2022/3899413
-
Dumagay, A. H. (2025). Preservice teachers and AI in Education 5.0: Examining literacy, anxiety, and attitudes across gender, socioeconomic status, and training. EthAIca: Journal of Ethics, AI and Critical Analysis, 4, 432. https://doi.org/10.56294/ai2025432
-
Erdoğan, E., & Tüfekci, N. (2023). A conceptual review of readiness. Journal of Current Researches on Health Sector, 13(1), 39–48.
-
Espina-Romero, L., Noroño Sánchez, J. G., Gutiérrez Hurtado, H., Dworaczek Conde, H., Solier Castro, Y., Cervera Cajo, L. E., & Rio Corredoira, J. (2023). Which industrial sectors are affected by artificial intelligence? A bibliometric analysis of trends and perspectives. Sustainability, 15(16), 12176. https://doi.org/10.3390/su151612176
-
Giray Yakut, S., Kandur Arslan, H., & Yılmaz Küsen, G. (2025). Yapay zekâya bakış: Üniversite öğrencilerinin tutumlarına yönelik bir profil çalışması. Journal of Awareness, 10(1), e2684. https://doi.org/10.26809/joa.2684
-
Güncan, B., & Eser, U. (2025). Bridging the AI competency gap: Readiness and curricular strategies among medical students in a single-center Turkish study (Preprint). https://doi.org/10.2196/preprints.79053
-
Holmes, J., Sacchi, L., & Bellazzi, R. (2004). Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 86, 334–338.
-
Sheikh, H., Prins, C., & Schrijvers, E. (2023). Artificial intelligence: Definition and background. In Mission AI: Research for policy. Springer. https://doi.org/10.1007/978-3-031-21448-6_2
-
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem, 2(1), 15–30. https://doi.org/10.1016/j.aac.2022.10.001
-
Johnson, D. G., & Verdicchio, M. (2017). AI anxiety. Journal of the Association for Information Science and Technology, 68(9), 2267–2270. https://doi.org/10.1002/asi.23867
-
Karaca, O., Çalışkan, S. A., & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS): Development, validity, and reliability study. BMC Medical Education, 21(1), 112. https://doi.org/10.1186/s12909-021-02546-6
-
Lemay, D. J., Basnet, R. B., & Doleck, T. (2020). Fearing the robot apocalypse: Correlates of AI anxiety. International Journal of Learning Analytics and Artificial Intelligence for Education, 2(2), 24–33.
-
Malik, P., Pathania, M., & Rathaur, V. K. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328–2331.
-
Montazeri, E., Zarei, J., Hoseinpour, B., & Bahadori, A. (2025). Assessing the level of readiness for digital transformation in medicine: Students of Ahvaz Jundishapur University of Medical Sciences for the use of artificial intelligence in health (Preprint). https://doi.org/10.21203/rs.3.rs-7313375/v1
-
Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393–399.
-
Özçomak, M. S., & Çebi, K. (2017). İstatistiksel güç analizi: Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi üzerine bir uygulama. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 31(2), 413–431.
-
Pannu, A. (2015). Artificial intelligence and its application in different areas. Artificial Intelligence, 4(10), 79–84.
Perrault, R., & Jack, C. (2024). Artificial Intelligence Index Report 2024. Stanford University.
-
Petrov, N., & Vasileva, S. (2014). History and advances of artificial intelligence. Science and Culture. https://www.researchgate.net/profile/Svetla_Vassileva/publication/261132956
-
Qu, Y., Tan, M. X. Y., & Wang, J. (2024). Disciplinary differences in undergraduate students’ engagement with generative artificial intelligence. Smart Learning Environments, 11(1), 51. https://doi.org/10.1186/s40561-024-00341-6
-
Spunt, R. P. (2015). Dual-process theories in social cognitive neuroscience. In A. W. Toga (Ed.), Brain mapping (pp. 211–215). Academic Press.
-
Syifauddin, M., & Yuliansyah, A. (2023). The effect of using AI on students’ motivation and anxiety in learning English. Transformational Language Literature and Technology Overview in Learning (Transtool), 2(2), 9–15. https://doi.org/10.55047/transtool.v2i2.1354
-
Raosoft. (2024). Sample size calculator. http://www.raosoft.com/samplesize.html (Accessed May 20, 2025)
-
Reyhan Aktaş, F., & Dagli, E. (2023). Evaluation of midwifery students’ anxiety regarding artificial intelligence used in the field of health. Journal of Health Sciences Institute, 8(Special Issue), 290–296.
-
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson.
-
Savaş, B. Ç., Turan, M., & Tatlısu, B. (2024). Spor bilimleri fakültesinde öğrenim gören öğrencilerin yapay zekâ kaygılarının farklı değişkenlere göre incelenmesi. In S. Ulupınar, E. Tozoğlu, & Y. S. Biricik (Eds.), Antrenman biliminde sürdürülebilirlik ve nitel araştırmalar (Chap. 9). Özgür Yayıncılık. https://doi.org/10.58830/ozgur.pub487.c2035
-
Sevimli Deniz, S. (2022). Yapay zekâ kaygısının incelenmesine ilişkin bir araştırma. International Social Mentality and Researcher Thinkers Journal, 8(63), 1675–1677.
-
Simkus, J. (2022). Convenience sampling: Definition, method and examples. https://www.simplypsychology.org/convenience-sampling.html
-
Sridhar, A., Pesala, B., Radhakrishnan, G., Niezgoda, J., & Gopalakrishnan, S. (2025). Evolution of artificial intelligence. In Artificial intelligence and biological sciences (pp. 26–37). CRC Press.
-
Taş, D., & Turanligil, F. (2020). Sağlık çalışanlarının bilgisayar teknolojisine karşı tutumları ile teknoloji öz-yeterliği düzeylerinin işgücü devrine etkisi: Gaziantep Üniversitesi Tıp Fakültesi Hastanesi örneği. Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 21(2), 1–17.
-
Terzi, R. (2020). An adaptation of artificial intelligence anxiety scale into Turkish: Reliability and validity study. International Online Journal of Education and Teaching (IOJET), 7(4), 1501–1515.
-
Tubaro, P., Casilli, A. A., & Coville, M. (2020). The trainer, the verifier, the imitator: Three ways in which human platform workers support artificial intelligence. Big Data & Society, 7(1), 2053951720919776. https://doi.org/10.1177/2053951720919776
-
Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test (pp. 23–65). Springer.
-
Uysal, İ., & Kılıç, A. (2022). Normal dağılım ikilemi. Anadolu Journal of Educational Sciences International, 12(1), 220–248. https://doi.org/10.18039/ajesi.962653
-
Yükseköğretim Kurulu. (2024). YÖK Atlas. https://yokatlas.yok.gov.tr/lisans-univ.php?u=1111 (Accessed May 20, 2025)
Examining Health Sciences Students' Perceived Awareness, Readiness and Anxiety Levels Regarding Artificial Intelligence
Year 2025,
Issue: Advanced Online Publication, 748 - 757
Onur Mutlu Yaşar
,
Egemen Mancı
,
Hazal Yakut Ozdemir
,
Hilal Bahcecioğlu
,
Gülseren Yürekli
Abstract
Artificial intelligence (AI) is increasingly impacting healthcare, making it essential to assess students’ preparedness, awareness, and attitudes. This study investigated Faculty of Health Sciences students’ AI awareness, readiness, and anxiety, examining variations by gender, department, age, and class level. A cross-sectional survey was conducted with 328 undergraduate students from İzmir Demokrasi University, using demographic questions, the Artificial Intelligence Readiness Scale, and the Artificial Intelligence Anxiety Scale. Analyses included descriptive statistics, Pearson correlation, independent samples t-tests, and one-way ANOVA. Over half of the students (54.9%) reported limited knowledge of AI applications, with social media as the main information source. Most students (82.6%) were satisfied with AI integration, yet 57% experienced anxiety. Female students showed significantly higher anxiety than males, and both department and class level influenced readiness and anxiety, while no significant correlation was found between readiness and anxiety. Despite a strong interest in AI, students’ readiness is limited by insufficient formal education. Structured curricula, interdisciplinary workshops, and targeted interventions are recommended to enhance AI literacy and reduce anxiety, particularly among female students and those in departments with higher concern.
Ethical Statement
The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of İzmir Demokrasi University Non-Invasive Clinical Research Ethics Committee (protocol code 2024/03-06 and date of approval 27.03.2024).
Supporting Institution
This research received no external funding.
Thanks
The authors wish to express their sincere gratitude to Sudenaz Çentay for her assistance in the data collection process.
References
-
Akşab, Ş., & Seggie, F. N. (2024). Yükseköğretimde yapay zekâ: Öğretim, araştırma ve topluma hizmet açısından bakış. Eğitimde Kuram ve Uygulama, 20(2), 29–45. https://doi.org/10.17244/eku.1457088
-
Balasa, K. A. (2025). Interplay of AI literacy, readiness-confidence, and acceptance among pre-service teachers in Philippine higher education: A gender, discipline, and connectivity perspective. EthAIca: Journal of Ethics, AI and Critical Analysis, 4, 429. https://doi.org/10.56294/ai2025429
-
Balasa, K. A., Dumagay, A. H., Alieto, E. O., & González Vallejo, R. (2025). Gender and age dynamics in future educators’ attitudes toward AI integration in education: A sample from state-managed universities in Zamboanga Peninsula, Philippines. Seminars in Medical Writing and Education, 4, 668. https://doi.org/10.56294/mw2025668
-
Başer Seçer, M. (2024). Sağlık alanında öğrenim gören üniversite öğrencilerinin sağlıkta yapay zeka uygulamaları ve ChatGPT farkındalığı, yapay zeka kullanımına yönelik görüşleri ve teknostres düzeylerinin incelenmesi: Kesitsel bir çalışma. Türkiye Klinikleri Journal of Health Sciences, 9(4), 856–866. https://doi.org/10.5336/healthsci.2024-104224
-
Birtchnell, T. (2018). Listening without ears: Artificial intelligence in audio mastering. Big Data & Society, 5(2), 2053951718808553. https://doi.org/10.1177/2053951718808553
-
Büyüköztürk, Ş. (2020). Sosyal bilimler için veri analizi el kitabı. Pegem Akademi.
-
Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-analysis. Computers & Education, 105, 1–13. https://doi.org/10.1016/j.compedu.2016.11.003
-
Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8
-
Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th ed.). Routledge.
-
Çelik, S., & Dönmez, İ. (2025). Üniversite öğrencilerinin yapay zekâya yönelik kaygı ve tutumlarının incelenmesi. Gazi Eğitim Bilimleri Dergisi, 11(2), 346–370.
-
El Arab, R. A., Alshakihs, A. H., Alabdulwahab, S. H., Almubarak, Y. S., Alkhalifah, S. S., Abdrbo, A., … Sagbakken, M. (2025). Artificial intelligence in nursing: A systematic review of attitudes, literacy, readiness, and adoption intentions among nursing students and practicing nurses. Frontiers in Digital Health, 7, 1666005. https://doi.org/10.3389/fdgth.2025.1666005
-
Deng, H., Jia, W., & Chai, D. (2022). Discussion on innovative methods of higher teacher education and training based on new artificial intelligence. Security and Communication Networks, 2022, 3899413, 1–10. https://doi.org/10.1155/2022/3899413
-
Dumagay, A. H. (2025). Preservice teachers and AI in Education 5.0: Examining literacy, anxiety, and attitudes across gender, socioeconomic status, and training. EthAIca: Journal of Ethics, AI and Critical Analysis, 4, 432. https://doi.org/10.56294/ai2025432
-
Erdoğan, E., & Tüfekci, N. (2023). A conceptual review of readiness. Journal of Current Researches on Health Sector, 13(1), 39–48.
-
Espina-Romero, L., Noroño Sánchez, J. G., Gutiérrez Hurtado, H., Dworaczek Conde, H., Solier Castro, Y., Cervera Cajo, L. E., & Rio Corredoira, J. (2023). Which industrial sectors are affected by artificial intelligence? A bibliometric analysis of trends and perspectives. Sustainability, 15(16), 12176. https://doi.org/10.3390/su151612176
-
Giray Yakut, S., Kandur Arslan, H., & Yılmaz Küsen, G. (2025). Yapay zekâya bakış: Üniversite öğrencilerinin tutumlarına yönelik bir profil çalışması. Journal of Awareness, 10(1), e2684. https://doi.org/10.26809/joa.2684
-
Güncan, B., & Eser, U. (2025). Bridging the AI competency gap: Readiness and curricular strategies among medical students in a single-center Turkish study (Preprint). https://doi.org/10.2196/preprints.79053
-
Holmes, J., Sacchi, L., & Bellazzi, R. (2004). Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 86, 334–338.
-
Sheikh, H., Prins, C., & Schrijvers, E. (2023). Artificial intelligence: Definition and background. In Mission AI: Research for policy. Springer. https://doi.org/10.1007/978-3-031-21448-6_2
-
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem, 2(1), 15–30. https://doi.org/10.1016/j.aac.2022.10.001
-
Johnson, D. G., & Verdicchio, M. (2017). AI anxiety. Journal of the Association for Information Science and Technology, 68(9), 2267–2270. https://doi.org/10.1002/asi.23867
-
Karaca, O., Çalışkan, S. A., & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS): Development, validity, and reliability study. BMC Medical Education, 21(1), 112. https://doi.org/10.1186/s12909-021-02546-6
-
Lemay, D. J., Basnet, R. B., & Doleck, T. (2020). Fearing the robot apocalypse: Correlates of AI anxiety. International Journal of Learning Analytics and Artificial Intelligence for Education, 2(2), 24–33.
-
Malik, P., Pathania, M., & Rathaur, V. K. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328–2331.
-
Montazeri, E., Zarei, J., Hoseinpour, B., & Bahadori, A. (2025). Assessing the level of readiness for digital transformation in medicine: Students of Ahvaz Jundishapur University of Medical Sciences for the use of artificial intelligence in health (Preprint). https://doi.org/10.21203/rs.3.rs-7313375/v1
-
Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393–399.
-
Özçomak, M. S., & Çebi, K. (2017). İstatistiksel güç analizi: Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi üzerine bir uygulama. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 31(2), 413–431.
-
Pannu, A. (2015). Artificial intelligence and its application in different areas. Artificial Intelligence, 4(10), 79–84.
Perrault, R., & Jack, C. (2024). Artificial Intelligence Index Report 2024. Stanford University.
-
Petrov, N., & Vasileva, S. (2014). History and advances of artificial intelligence. Science and Culture. https://www.researchgate.net/profile/Svetla_Vassileva/publication/261132956
-
Qu, Y., Tan, M. X. Y., & Wang, J. (2024). Disciplinary differences in undergraduate students’ engagement with generative artificial intelligence. Smart Learning Environments, 11(1), 51. https://doi.org/10.1186/s40561-024-00341-6
-
Spunt, R. P. (2015). Dual-process theories in social cognitive neuroscience. In A. W. Toga (Ed.), Brain mapping (pp. 211–215). Academic Press.
-
Syifauddin, M., & Yuliansyah, A. (2023). The effect of using AI on students’ motivation and anxiety in learning English. Transformational Language Literature and Technology Overview in Learning (Transtool), 2(2), 9–15. https://doi.org/10.55047/transtool.v2i2.1354
-
Raosoft. (2024). Sample size calculator. http://www.raosoft.com/samplesize.html (Accessed May 20, 2025)
-
Reyhan Aktaş, F., & Dagli, E. (2023). Evaluation of midwifery students’ anxiety regarding artificial intelligence used in the field of health. Journal of Health Sciences Institute, 8(Special Issue), 290–296.
-
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson.
-
Savaş, B. Ç., Turan, M., & Tatlısu, B. (2024). Spor bilimleri fakültesinde öğrenim gören öğrencilerin yapay zekâ kaygılarının farklı değişkenlere göre incelenmesi. In S. Ulupınar, E. Tozoğlu, & Y. S. Biricik (Eds.), Antrenman biliminde sürdürülebilirlik ve nitel araştırmalar (Chap. 9). Özgür Yayıncılık. https://doi.org/10.58830/ozgur.pub487.c2035
-
Sevimli Deniz, S. (2022). Yapay zekâ kaygısının incelenmesine ilişkin bir araştırma. International Social Mentality and Researcher Thinkers Journal, 8(63), 1675–1677.
-
Simkus, J. (2022). Convenience sampling: Definition, method and examples. https://www.simplypsychology.org/convenience-sampling.html
-
Sridhar, A., Pesala, B., Radhakrishnan, G., Niezgoda, J., & Gopalakrishnan, S. (2025). Evolution of artificial intelligence. In Artificial intelligence and biological sciences (pp. 26–37). CRC Press.
-
Taş, D., & Turanligil, F. (2020). Sağlık çalışanlarının bilgisayar teknolojisine karşı tutumları ile teknoloji öz-yeterliği düzeylerinin işgücü devrine etkisi: Gaziantep Üniversitesi Tıp Fakültesi Hastanesi örneği. Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 21(2), 1–17.
-
Terzi, R. (2020). An adaptation of artificial intelligence anxiety scale into Turkish: Reliability and validity study. International Online Journal of Education and Teaching (IOJET), 7(4), 1501–1515.
-
Tubaro, P., Casilli, A. A., & Coville, M. (2020). The trainer, the verifier, the imitator: Three ways in which human platform workers support artificial intelligence. Big Data & Society, 7(1), 2053951720919776. https://doi.org/10.1177/2053951720919776
-
Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test (pp. 23–65). Springer.
-
Uysal, İ., & Kılıç, A. (2022). Normal dağılım ikilemi. Anadolu Journal of Educational Sciences International, 12(1), 220–248. https://doi.org/10.18039/ajesi.962653
-
Yükseköğretim Kurulu. (2024). YÖK Atlas. https://yokatlas.yok.gov.tr/lisans-univ.php?u=1111 (Accessed May 20, 2025)