Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite
Year 2025, Volume: 10 Issue: 1, 1 - 21, 29.03.2025
https://doi.org/10.47481/jscmt.1667601

Abstract

References

  • 1. Ingrao, C., Scrucca, F., Tricase, C., & Asdrubali, F. (2016). A comparative life cycle assessment of external wall compositions for cleaner construction solutions in buildings. J Clean Prod, 124, 283-298. [CrossRef]
  • 2. Rodríguez, G., Medina, C., Alegre, F. J., Asensio, E., & De Rojas, M. S. (2015). Assessment of construction and demolition waste plant management in Spain: In pursuit of sustainability and eco-efficiency. J Clean Prod, 90, 16-24. [CrossRef]
  • 3. Caldas, L., Martins, M., Lima, D., & Sposto, R. (2016, April). Literature review of life cycle assessment applied to green concretes. In Proc 6th Amazon & Pacific Green Mater Congr and Sustainable Constr Mater Lat-Rilem Conf, Cali, Colombia (pp. 27-29).
  • 4. Surahman, U., Kubota, T., & Higashi, O. (2015). Life cycle assessment of energy and CO₂ emissions for residential buildings in Jakarta and Bandung, Indonesia. Buildings, 5(4), 1131-1155. [CrossRef]
  • 5. Malviya, R. K., Singh, R. K., Purohit, R., & Sinha, R. (2020). Natural fiber reinforced composite materials: Environmentally better life cycle assessment - A case study. Mater Today Proc, 26, 3157-3160. [CrossRef]
  • 6. Tangadagi, R. B., Manjunatha, M., Bharath, A., & Preethi, S. (2020). Utilization of steel slag as an eco-friendly material in concrete for construction. J Green Eng, 10(5), 2408-2419.
  • 7. Limbachiya, M., Meddah, M. S., & Ouchagour, Y. (2012). Use of recycled concrete aggregate in fly-ash concrete. Constr Build Mater, 27(1), 439-449. [CrossRef]
  • 8. Mendoza, F. J. C., Altabella, J. E., & Izquierdo, A. G. (2017). Application of inert wastes in the construction, operation and closure of landfills: Calculation tool. Waste Manag, 59, 276-285. [CrossRef]
  • 9. Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr Build Mater, 131, 721-740. [CrossRef]
  • 10. Vandenbroucke, M., Galle, W., De Temmerman, N., Debacker, W., & Paduart, A. (2015). Using life cycle assessment to inform decision-making for sustainable buildings. Buildings, 5(2), 536-559. [CrossRef]
  • 11. Aravind, M. V., & Ranjith, V. (2022). Study on partial replacement of cement and coarse aggregate by egg shell powder and steel slag in concrete. Int J Res Appl Sci Eng Technol, 10, 667-672. [CrossRef]
  • 12. Nilsson, M., & Eckerberg, K. (Eds.). (2009). Environmental policy integration in practice: Shaping institutions for learning. Earthscan.
  • 13. Cuenca-Moyano, G. M., Zanni, S., Bonoli, A., & Valverde-Palacios, I. (2017). Development of the life cycle inventory of masonry mortar made of natural and recycled aggregates. J Clean Prod, 140, 1272-1286. [CrossRef]
  • 14. Prusty, J. K., Patro, S. K., & Basarkar, S. S. (2016). Concrete using agro-waste as fine aggregate for sustainable built environment - A review. Int J Sustain Built Environ, 5(2), 312-333. [CrossRef]
  • 15. Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2013). Plastic shrinkage and deflection characteristics of coconut shell concrete slab. Constr Build Mater, 43, 203-207. [CrossRef]
  • 16. Ismail, M. S., & Waliuddin, A. M. (1996). Effect of rice husk ash on high strength concrete. Constr Build Mater, 10(7), 521-526. [CrossRef]
  • 17. Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Alsubari, B., Alqedra, M. A., & Mo, K. H. (2018). Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Constr Build Mater, 163, 482-495. [CrossRef]
  • 18. Belhadj, B., Bederina, M., Makhloufi, Z., Dheilly, R. M., Montrelay, N., & Quéneudéc, M. (2016). Contribution to the development of a sand concrete lightened by the addition of barley straws. Constr Build Mater, 113, 513-522. [CrossRef]
  • 19. Liuzzi, S., Sanarica, S., & Stefanizzi, P. (2017). Use of agro-wastes in building materials in the Mediterranean area: A review. Energy Procedia, 126, 242-249. [CrossRef]
  • 20. Curran, M. A. (2015). Life cycle assessment student handbook. John Wiley & Sons.
  • 21. Xiao, D., Wang, H., Zhu, J., & Peng, S. (2001). Sequent and accumulative life cycle assessment of materials and products. Mater Des, 22(2), 147-149. [CrossRef]
  • 22. Jincheng, X., Weichang, H., Xinli, K., & Tianmin, W. (2001). Research and development of the object-oriented life cycle assessment database. Mater Des, 22(2), 101-105. [CrossRef]
  • 23. Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., & Klüppel, H. J. (2006). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess, 11, 80-85. [CrossRef]
  • 24. Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., … & Suh, S. (2009). Recent developments in life cycle assessment. J Environ Manage, 91(1), 1-21. [CrossRef]
  • 25. De Souza, D. M., Lafontaine, M., Charron-Doucet, F., Chappert, B., Kicak, K., Duarte, F., & Lima, L. (2016). Comparative life cycle assessment of ceramic brick, concrete brick and cast-in-place reinforced concrete exterior walls. J Clean Prod, 137, 70-82. [CrossRef]
  • 26. Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr Build Mater, 124, 656-666. [CrossRef]
  • 27. Colangelo, F., & Cioffi, R. (2017). Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy. Compos B Eng, 115, 43-50. [CrossRef]
  • 28. Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., & Forcina, A. (2018). Life cycle assessment of recycled concretes: A case study in southern Italy. Sci Total Environ, 615, 1506-1517. [CrossRef]
  • 29. Kleijer, A. L., Lasvaux, S., Citherlet, S., & Viviani, M. (2017). Product-specific life cycle assessment of ready mix concrete: Comparison between a recycled and an ordinary concrete. Resour Conserv Recycl, 122, 210-218. [CrossRef]
  • 30. Turk, J., Cotič, Z., Mladenovič, A., & Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Manag, 45, 194-205. [CrossRef]
  • 31. Estanqueiro, B., Dinis Silvestre, J., de Brito, J., & Duarte Pinheiro, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. Eur J Environ Civ Eng, 22(4), 429-449. [CrossRef]
  • 32. Marthong, C. (2012). Sawdust ash (SDA) as partial replacement of cement. Int J Eng Res Appl, 2(4), 1980-1985.
  • 33. Nivedhitha, M., & Sivaraja, M. (2017). Experimental study on partial replacement of cement with coconut shell powder and egg shell powder. Int J Innov Res Sci Eng Technol, 6(5), 8505-8510.
  • 34. Kumar, P., Vijaya, R. S., & Jose, R. B. (2015). Experimental study on partial replacement of cement with egg shell powder. Int J Innov Eng Technol, 4, 334-341.
  • 35. Dhanalakshmi, M., Sowmya, N. J., & Chandrashekar, A. (2015). A comparative study on egg shell concrete with partial replacement of cement by fly ash. Int J Eng Res Technol, 4, 1532-1538. [CrossRef]
  • 36. Yerramala, A. (2014). Properties of concrete with eggshell powder as cement replacement. Indian Concr J, 88(10), 94-105.
  • 37. Jayasankar, R., Mahindran, N., & Ilangovan, R. (2010). Studies on concrete using fly ash, rice husk ash and egg shell powder. Int J Civil Struct Eng, 1(3), 362-372.
  • 38. Al-Heaty, A. K. (2000). Controlling slump loss problems in ready mix high resistance concrete exposed to severe solutions [Doctoral dissertation, MSc Thesis]. University of Technology.
  • 39. Tan, Y. Y., Doh, S. I., & Chin, S. C. (2018). Durability analysis of natural lime concrete. In Reg Conf Sci Technol Soc Sci (RCSTSS 2016) Theor Appl Sci (pp. 283-290). Springer Singapore. [CrossRef]
  • 40. Yerramala, A., & Ramachandrudu, C. (2012). Properties of concrete with coconut shells as aggregate replacement. Int J Eng Inventions, 1(6), 21-31.
  • 41. Parkash, A. (2017). Generation of electricity from sewage sludge using dual chambered microbial fuel cell containing copper as electrodes. Int J Res Appl Sci Eng Technol, 45, 864-867.
  • 42. Afolayan, M., & Orijajogun, J. (2024). Isolation and physicochemical characterization of starch from Marama Beans (Tylosema esculentum). Afr J Biol Chem Phys Sci, 3(1), 10-18.
  • 43. Loganathan, M., Dinesh, S., Vijayan, V., Karuppusamy, T., & Rajkumar, S. (2020). Investigation of mechanical behaviour on composites of Al6063 alloy with silicon, graphite and fly ash. J New Mater Electrochem Syst, 23(1), 36-39. [CrossRef]
  • 44. Dinesh, S., Parameswaran, P., Vijayan, V., Thanikaikarasan, S., & Rajaguru, K. (2019). Study on microstructure and properties of Al-Cu-Li alloys for electrochemical applications. J New Mater Electrochem Syst, 21, 011-014.
  • 45. Prasath, T. A., Sudharsan, P., & Kumar, B. S. (2021). A study on incorporation of supplementary cementitious materials for sustainable development. Mater Today Proc, 37, 3363-3366. [CrossRef]
  • 46. Campbell, J. R., & Holland, J. (2005). Development research: Convergent or divergent approaches and understandings of poverty? An introduction. Focaal, 2005(45), 3-17. [CrossRef]
  • 47. Jyosyula, S. K. R., Surana, S., & Raju, S. (2020). Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building. Mater Today Proc, 27, 984-990. [CrossRef]
  • 48. Badagha, D., & Modhera, C. D. (2017). M55 grade concrete using industrial waste to minimize cement content incorporating CO₂ emission concept: An experimental investigation. Mater Today Proc, 4(9), 9768-9772. [CrossRef]
  • 49. Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Constr Build Mater, 209, 115-125. [CrossRef]
  • 50. Manjunatha, M., Vijaya Bhaskar Raju, K., & Sivapullaiah, P. V. (2021). Effect of PVC dust on the performance of cement concrete - A sustainable approach. In Recent Dev Sustain Infrastruct: Sel Proc ICRDSI 2019 (pp. 607-617). Springer Singapore. [CrossRef]
  • 51. Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste - A review. Waste Manag, 113, 157-175. [CrossRef]
  • 52. Makul, N. (2020). Modern sustainable cement and concrete composites: Review of current status, challenges and guidelines. Sustain Mater Technol, 25, e00155. [CrossRef]
  • 53. Ben-Alon, L., Loftness, V., Harries, K. A., DiPietro, G., & Hameen, E. C. (2019). Cradle to site life cycle assessment (LCA) of natural vs conventional building materials: A case study on cob earthen material. Build Environ, 160, 106150. [CrossRef]
  • 54. Jiménez, C., Barra, M., Josa, A., & Valls, S. (2015). LCA of recycled and conventional concretes designed using the Equivalent Mortar Volume and classic methods. Constr Build Mater, 84, 245-252. [CrossRef]
  • 55. Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr Build Mater, 124, 656-666. [CrossRef]
  • 56. Dandautiya, R., & Singh, A. P. (2019). Utilization potential of fly ash and copper tailings in concrete as partial replacement of cement along with life cycle assessment. Waste Manag, 99, 90-101. [CrossRef]
  • 57. Gursel, A. P., & Ostertag, C. (2019). Life‐cycle assessment of high‐strength concrete mixtures with copper slag as sand replacement. Adv Civ Eng, 2019(1), 6815348. [CrossRef]
  • 58. Colangelo, F., Forcina, A., Farina, I., & Petrillo, A. (2018). Life cycle assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8(5), 70. [CrossRef]
  • 59. Manjunatha, M., Seth, D., Balaji, K. V. G. D., & Chilukoti, S. (2021). Influence of PVC waste powder and silica fume on strength and microstructure properties of concrete: An experimental study. Case Stud Constr Mater, 15, e00610. [CrossRef]
  • 60. Manjunatha, M., Seth, D., Balaji, K. V. G. D., & Bharath, A. (2022). Engineering properties and environmental impact assessment of green concrete prepared with PVC waste powder: A step towards sustainable approach. Case Stud Constr Mater, 17, e01404. [CrossRef]
  • 61. Tangadagi, R. B., Manjunatha, M., Seth, D., & Preethi, S. (2021). Role of mineral admixtures on strength and durability of high strength self-compacting concrete: An experimental study. Materialia, 18, 101144. [CrossRef]
  • 62. Manjunatha, M., Seth, D., & Balaji, K. V. G. D. (2021). Role of engineered fibers on fresh and mechanical properties of concrete prepared with GGBS and PVC waste powder - An experimental study. Mater Today Proc, 47, 3683-3693. [CrossRef]
  • 63. Pradhan, S., Tiwari, B. R., Kumar, S., & Barai, S. V. (2019). Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix. J Clean Prod, 228, 679-691. [CrossRef]
  • 64. Teixeira, E. R., Mateus, R., Camoes, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J Clean Prod, 112, 2221-2230. [CrossRef]
  • 65. Manjunatha, M., Seth, D., Balaji, K. V. G. D., Roy, S., & Tangadagi, R. B. (2023). Utilization of industrial-based PVC waste powder in self-compacting concrete: A sustainable building material. J Clean Prod, 428, 139428. [CrossRef]
  • 66. Dharek, M. S., Manjunatha, M., Brijbhushan, S., Vengala, J., & Tangadagi, R. B. (2024). Performance evaluation of hybrid fiber reinforced concrete on engineering properties and life cycle assessment: A sustainable approach. J Clean Prod, 458, 142498. [CrossRef]
  • 67. Maddikeari, M., Das, B. B., Tangadagi, R. B., Roy, S., Nagaraj, P. B., & Ramachandra, M. L. (2024). A comprehensive review on use of wastewater in the manufacturing of concrete: Fostering sustainability through recycling. Recycling, 9(3), 45. [CrossRef]
  • 68. Gowsika, D. (2014). Experimental investigation of egg shell powder as partial replacement with cement in concrete. Int J Eng Trends Technol, 14(1), 65-68. [CrossRef]
  • 69. Sivakumar, M., & Mahendran, N. (2014). Strength and permeability properties of concrete using fly ash (FA), rice husk ash (RHA) and egg shell powder (ESP). J Theor Appl Inf Technol, 66(2), 489-499.
  • 70. Asman, N. S. A., Dullah, S., Ayog, J. L., Amaludin, A., Amaludin, H., Lim, C. H., & Baharum, A. (2017). Mechanical properties of concrete using eggshell ash and rice husk ash as partial replacement of cement. In MATEC Web Conf, 103, 01002. EDP Sciences. [CrossRef]
  • 71. Huijbregts, M. A., Hellweg, S., Frischknecht, R., Hendriks, H. W., Hungerbuhler, K., & Hendriks, A. J. (2010). Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol, 44(6), 2189-2196. [CrossRef]
  • 72. Technical Committee ISO/TC 207, Environmental Management. (2006). Environmental management - Life cycle assessment - Principles and framework. International Organization for Standardization.
  • 73. Mellino, S., Petrillo, A., Cigolotti, V., Autorino, C., Jannelli, E., & Ulgiati, S. (2017). A life cycle assessment of lithium battery and hydrogen-FC powered electric bicycles: Searching for cleaner solutions to urban mobility. Int J Hydrogen Energy, 42(3), 1830-1840. [CrossRef]
  • 74. Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag, 30(11), 2255-2264. [CrossRef]
  • 75. Khasreen, M. M., Banfill, P. F., & Menzies, G. F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3), 674-701. [CrossRef]
  • 76. Junnila, S., Horvath, A., & Guggemos, A. A. (2006). Life-cycle assessment of office buildings in Europe and the United States. J Infrastruct Syst, 12(1), 10-17. [CrossRef]
  • 77. Schneider, L., Berger, M., & Finkbeiner, M. (2011). The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess, 16, 929-936. [CrossRef]
  • 78. Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., … & Wernet, G. (2013). Overview and methodology: Data quality guideline for the ecoinvent database version 3. https://vbn.aau.dk/ws/portalfiles/portal/176769045/Overview_and_methodology.pdf
  • 79. PlasticsEurope. (2003). Eco-profiles of the European plastics industry. http://www.inference.org.uk/sustainable/LCA/elcd/external_docs/petb_31116f00-fabd-11da-974d-0800200c9a66.pdf
  • 80. PRé Sustainability. (2024). SimaPro 9.6. PRé Sustainability.
  • 81. Consultants, P. (2000). Eco-indicator 99 manual for designers. Ministry of Housing, Spatial Planning and the Environment, The Hague, The Netherlands.
  • 82. Fahad, F., Hossain, M. I., Alam, M. N., Roy, A. K., & Jaher, F. B. (2024). Assessing the concrete compressive strength through partial replacement of cement with composite waste (a mixture of waste glass powder and sawdust ash). Proceedings of the 7th International Conference on Civil Engineering for Sustainable Development, Khulna, Bangladesh.
  • 83. Kumar, N., Pali, H. S., Sonthalia, A., & Sidharth. (2022). Higher alcohols as diesel engine fuel. In Gupta, A. K., De, A., Aggarwal, S. K., Kushari, A., & Runchal, A. K. (Eds.), Advances in energy and combustion (pp. [chapter pages]). Green Energy and Technology. Springer, Singapore. [CrossRef]
  • 84. US Environmental Protection Agency. (n.d.). Archived technical factsheet on 1,1,1-trichloroethane. US EPA Archive Document.
  • 85. Weerakoon, H. P. A. T., Atapaththu, K. S. S., & Asanthi, H. B. (2018). Toxicity evaluation and environmental risk assessment of 2-methyl-4-chlorophenoxy acetic acid (MCPA) on non-target aquatic macrophyte Hydrilla verticillata. Environ Sci Pollut Res, 25, 30463-30474. [CrossRef]
  • 86. de Castro Marcato, A. C., de Souza, C. P., & Fontanet, C. S. (2017). Herbicide 2,4-D: A review of toxicity on non-target organisms. Water Air Soil Pollut, 228, 120. [CrossRef]

Evaluating the use of eggshell powder and sawdust ash as cement replacements in sustainable concrete development

Year 2025, Volume: 10 Issue: 1, 1 - 21, 29.03.2025
https://doi.org/10.47481/jscmt.1667601

Abstract

Concrete, the most widely utilized material in construction worldwide, contributes significantly to
the consumption of natural resources and energy. The construction sector is a major source of waste
and greenhouse gas (GHG) emissions, making it essential to improve the environmental impact of
concrete to address climate change and pollution concerns. Evaluating the environmental footprint of
concrete is crucial for advancing sustainable building practices. Cement, a key binder in concrete, is
particularly responsible for GHG emissions due to its energy-intensive production process. This study
applies the Life Cycle Assessment (LCA) methodology, using SimaPro software and the Ecoinvent
database, to assess the environmental impact of concrete. A modified concrete mix was developed by
replacing Portland Composite Cement with Eggshell Powder (ESP) (60% by weight) and Sawdust Ash
(SDA) (40% by weight) at varying replacement rates of 10%, 20%, 30%, and 40%. The results showed
up to 20% for replacement cement with ESP and SDA improved compressive strength in a 28-56 day
period, with the highest strength growth rate of 29.58% observed for the mixes with replacement.
However, higher replacement levels of 30% and 40% showed limited strength improvement during
the same period. The enhanced compressive Strength and higher strength growth (compared to tra-
ditional concrete) are observed withare0-20 % replacement of cement s. This suggests that this blend
of materials could be used in projects with significant budget constraints, directly decreasing carbon
emissions associated with concrete production. This aligns with global sustainability goals and can be
used in projects aiming for green certifications like LEED (Leadership in Energy and Environmental
Design). The study indicates that substituting cement with ESP and SDA reduces costs. This can sig-
nificantly benefit low-budget housing projects or areas with high cement prices, providing a direct
economic advantage. The environmental performance of the modified concrete was analyzed through
LCA following the ISO 14040:2006 framework, focusing on the cradle-to-grave impacts, including raw
material extraction, energy consumption, and water usage. One cubic meter of concrete was chosen
as the functional unit. The analysis revealed significant reductions in the endpoint impact categories,
including a 59% reduction in ecosystem impacts, 60% in human health, 61% in resource depletion,
59.79% in ozone depletion, and 54.32% in fossil fuel depletion. These results highlight the potential of
ESP and SDA as sustainable alternatives for improving concrete's mechanical properties and environ-
mental performance, supporting the development of more sustainable construction practices.

References

  • 1. Ingrao, C., Scrucca, F., Tricase, C., & Asdrubali, F. (2016). A comparative life cycle assessment of external wall compositions for cleaner construction solutions in buildings. J Clean Prod, 124, 283-298. [CrossRef]
  • 2. Rodríguez, G., Medina, C., Alegre, F. J., Asensio, E., & De Rojas, M. S. (2015). Assessment of construction and demolition waste plant management in Spain: In pursuit of sustainability and eco-efficiency. J Clean Prod, 90, 16-24. [CrossRef]
  • 3. Caldas, L., Martins, M., Lima, D., & Sposto, R. (2016, April). Literature review of life cycle assessment applied to green concretes. In Proc 6th Amazon & Pacific Green Mater Congr and Sustainable Constr Mater Lat-Rilem Conf, Cali, Colombia (pp. 27-29).
  • 4. Surahman, U., Kubota, T., & Higashi, O. (2015). Life cycle assessment of energy and CO₂ emissions for residential buildings in Jakarta and Bandung, Indonesia. Buildings, 5(4), 1131-1155. [CrossRef]
  • 5. Malviya, R. K., Singh, R. K., Purohit, R., & Sinha, R. (2020). Natural fiber reinforced composite materials: Environmentally better life cycle assessment - A case study. Mater Today Proc, 26, 3157-3160. [CrossRef]
  • 6. Tangadagi, R. B., Manjunatha, M., Bharath, A., & Preethi, S. (2020). Utilization of steel slag as an eco-friendly material in concrete for construction. J Green Eng, 10(5), 2408-2419.
  • 7. Limbachiya, M., Meddah, M. S., & Ouchagour, Y. (2012). Use of recycled concrete aggregate in fly-ash concrete. Constr Build Mater, 27(1), 439-449. [CrossRef]
  • 8. Mendoza, F. J. C., Altabella, J. E., & Izquierdo, A. G. (2017). Application of inert wastes in the construction, operation and closure of landfills: Calculation tool. Waste Manag, 59, 276-285. [CrossRef]
  • 9. Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Constr Build Mater, 131, 721-740. [CrossRef]
  • 10. Vandenbroucke, M., Galle, W., De Temmerman, N., Debacker, W., & Paduart, A. (2015). Using life cycle assessment to inform decision-making for sustainable buildings. Buildings, 5(2), 536-559. [CrossRef]
  • 11. Aravind, M. V., & Ranjith, V. (2022). Study on partial replacement of cement and coarse aggregate by egg shell powder and steel slag in concrete. Int J Res Appl Sci Eng Technol, 10, 667-672. [CrossRef]
  • 12. Nilsson, M., & Eckerberg, K. (Eds.). (2009). Environmental policy integration in practice: Shaping institutions for learning. Earthscan.
  • 13. Cuenca-Moyano, G. M., Zanni, S., Bonoli, A., & Valverde-Palacios, I. (2017). Development of the life cycle inventory of masonry mortar made of natural and recycled aggregates. J Clean Prod, 140, 1272-1286. [CrossRef]
  • 14. Prusty, J. K., Patro, S. K., & Basarkar, S. S. (2016). Concrete using agro-waste as fine aggregate for sustainable built environment - A review. Int J Sustain Built Environ, 5(2), 312-333. [CrossRef]
  • 15. Gunasekaran, K., Annadurai, R., & Kumar, P. S. (2013). Plastic shrinkage and deflection characteristics of coconut shell concrete slab. Constr Build Mater, 43, 203-207. [CrossRef]
  • 16. Ismail, M. S., & Waliuddin, A. M. (1996). Effect of rice husk ash on high strength concrete. Constr Build Mater, 10(7), 521-526. [CrossRef]
  • 17. Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Alsubari, B., Alqedra, M. A., & Mo, K. H. (2018). Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Constr Build Mater, 163, 482-495. [CrossRef]
  • 18. Belhadj, B., Bederina, M., Makhloufi, Z., Dheilly, R. M., Montrelay, N., & Quéneudéc, M. (2016). Contribution to the development of a sand concrete lightened by the addition of barley straws. Constr Build Mater, 113, 513-522. [CrossRef]
  • 19. Liuzzi, S., Sanarica, S., & Stefanizzi, P. (2017). Use of agro-wastes in building materials in the Mediterranean area: A review. Energy Procedia, 126, 242-249. [CrossRef]
  • 20. Curran, M. A. (2015). Life cycle assessment student handbook. John Wiley & Sons.
  • 21. Xiao, D., Wang, H., Zhu, J., & Peng, S. (2001). Sequent and accumulative life cycle assessment of materials and products. Mater Des, 22(2), 147-149. [CrossRef]
  • 22. Jincheng, X., Weichang, H., Xinli, K., & Tianmin, W. (2001). Research and development of the object-oriented life cycle assessment database. Mater Des, 22(2), 101-105. [CrossRef]
  • 23. Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., & Klüppel, H. J. (2006). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess, 11, 80-85. [CrossRef]
  • 24. Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., … & Suh, S. (2009). Recent developments in life cycle assessment. J Environ Manage, 91(1), 1-21. [CrossRef]
  • 25. De Souza, D. M., Lafontaine, M., Charron-Doucet, F., Chappert, B., Kicak, K., Duarte, F., & Lima, L. (2016). Comparative life cycle assessment of ceramic brick, concrete brick and cast-in-place reinforced concrete exterior walls. J Clean Prod, 137, 70-82. [CrossRef]
  • 26. Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr Build Mater, 124, 656-666. [CrossRef]
  • 27. Colangelo, F., & Cioffi, R. (2017). Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy. Compos B Eng, 115, 43-50. [CrossRef]
  • 28. Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., & Forcina, A. (2018). Life cycle assessment of recycled concretes: A case study in southern Italy. Sci Total Environ, 615, 1506-1517. [CrossRef]
  • 29. Kleijer, A. L., Lasvaux, S., Citherlet, S., & Viviani, M. (2017). Product-specific life cycle assessment of ready mix concrete: Comparison between a recycled and an ordinary concrete. Resour Conserv Recycl, 122, 210-218. [CrossRef]
  • 30. Turk, J., Cotič, Z., Mladenovič, A., & Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Manag, 45, 194-205. [CrossRef]
  • 31. Estanqueiro, B., Dinis Silvestre, J., de Brito, J., & Duarte Pinheiro, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. Eur J Environ Civ Eng, 22(4), 429-449. [CrossRef]
  • 32. Marthong, C. (2012). Sawdust ash (SDA) as partial replacement of cement. Int J Eng Res Appl, 2(4), 1980-1985.
  • 33. Nivedhitha, M., & Sivaraja, M. (2017). Experimental study on partial replacement of cement with coconut shell powder and egg shell powder. Int J Innov Res Sci Eng Technol, 6(5), 8505-8510.
  • 34. Kumar, P., Vijaya, R. S., & Jose, R. B. (2015). Experimental study on partial replacement of cement with egg shell powder. Int J Innov Eng Technol, 4, 334-341.
  • 35. Dhanalakshmi, M., Sowmya, N. J., & Chandrashekar, A. (2015). A comparative study on egg shell concrete with partial replacement of cement by fly ash. Int J Eng Res Technol, 4, 1532-1538. [CrossRef]
  • 36. Yerramala, A. (2014). Properties of concrete with eggshell powder as cement replacement. Indian Concr J, 88(10), 94-105.
  • 37. Jayasankar, R., Mahindran, N., & Ilangovan, R. (2010). Studies on concrete using fly ash, rice husk ash and egg shell powder. Int J Civil Struct Eng, 1(3), 362-372.
  • 38. Al-Heaty, A. K. (2000). Controlling slump loss problems in ready mix high resistance concrete exposed to severe solutions [Doctoral dissertation, MSc Thesis]. University of Technology.
  • 39. Tan, Y. Y., Doh, S. I., & Chin, S. C. (2018). Durability analysis of natural lime concrete. In Reg Conf Sci Technol Soc Sci (RCSTSS 2016) Theor Appl Sci (pp. 283-290). Springer Singapore. [CrossRef]
  • 40. Yerramala, A., & Ramachandrudu, C. (2012). Properties of concrete with coconut shells as aggregate replacement. Int J Eng Inventions, 1(6), 21-31.
  • 41. Parkash, A. (2017). Generation of electricity from sewage sludge using dual chambered microbial fuel cell containing copper as electrodes. Int J Res Appl Sci Eng Technol, 45, 864-867.
  • 42. Afolayan, M., & Orijajogun, J. (2024). Isolation and physicochemical characterization of starch from Marama Beans (Tylosema esculentum). Afr J Biol Chem Phys Sci, 3(1), 10-18.
  • 43. Loganathan, M., Dinesh, S., Vijayan, V., Karuppusamy, T., & Rajkumar, S. (2020). Investigation of mechanical behaviour on composites of Al6063 alloy with silicon, graphite and fly ash. J New Mater Electrochem Syst, 23(1), 36-39. [CrossRef]
  • 44. Dinesh, S., Parameswaran, P., Vijayan, V., Thanikaikarasan, S., & Rajaguru, K. (2019). Study on microstructure and properties of Al-Cu-Li alloys for electrochemical applications. J New Mater Electrochem Syst, 21, 011-014.
  • 45. Prasath, T. A., Sudharsan, P., & Kumar, B. S. (2021). A study on incorporation of supplementary cementitious materials for sustainable development. Mater Today Proc, 37, 3363-3366. [CrossRef]
  • 46. Campbell, J. R., & Holland, J. (2005). Development research: Convergent or divergent approaches and understandings of poverty? An introduction. Focaal, 2005(45), 3-17. [CrossRef]
  • 47. Jyosyula, S. K. R., Surana, S., & Raju, S. (2020). Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building. Mater Today Proc, 27, 984-990. [CrossRef]
  • 48. Badagha, D., & Modhera, C. D. (2017). M55 grade concrete using industrial waste to minimize cement content incorporating CO₂ emission concept: An experimental investigation. Mater Today Proc, 4(9), 9768-9772. [CrossRef]
  • 49. Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Constr Build Mater, 209, 115-125. [CrossRef]
  • 50. Manjunatha, M., Vijaya Bhaskar Raju, K., & Sivapullaiah, P. V. (2021). Effect of PVC dust on the performance of cement concrete - A sustainable approach. In Recent Dev Sustain Infrastruct: Sel Proc ICRDSI 2019 (pp. 607-617). Springer Singapore. [CrossRef]
  • 51. Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste - A review. Waste Manag, 113, 157-175. [CrossRef]
  • 52. Makul, N. (2020). Modern sustainable cement and concrete composites: Review of current status, challenges and guidelines. Sustain Mater Technol, 25, e00155. [CrossRef]
  • 53. Ben-Alon, L., Loftness, V., Harries, K. A., DiPietro, G., & Hameen, E. C. (2019). Cradle to site life cycle assessment (LCA) of natural vs conventional building materials: A case study on cob earthen material. Build Environ, 160, 106150. [CrossRef]
  • 54. Jiménez, C., Barra, M., Josa, A., & Valls, S. (2015). LCA of recycled and conventional concretes designed using the Equivalent Mortar Volume and classic methods. Constr Build Mater, 84, 245-252. [CrossRef]
  • 55. Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr Build Mater, 124, 656-666. [CrossRef]
  • 56. Dandautiya, R., & Singh, A. P. (2019). Utilization potential of fly ash and copper tailings in concrete as partial replacement of cement along with life cycle assessment. Waste Manag, 99, 90-101. [CrossRef]
  • 57. Gursel, A. P., & Ostertag, C. (2019). Life‐cycle assessment of high‐strength concrete mixtures with copper slag as sand replacement. Adv Civ Eng, 2019(1), 6815348. [CrossRef]
  • 58. Colangelo, F., Forcina, A., Farina, I., & Petrillo, A. (2018). Life cycle assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8(5), 70. [CrossRef]
  • 59. Manjunatha, M., Seth, D., Balaji, K. V. G. D., & Chilukoti, S. (2021). Influence of PVC waste powder and silica fume on strength and microstructure properties of concrete: An experimental study. Case Stud Constr Mater, 15, e00610. [CrossRef]
  • 60. Manjunatha, M., Seth, D., Balaji, K. V. G. D., & Bharath, A. (2022). Engineering properties and environmental impact assessment of green concrete prepared with PVC waste powder: A step towards sustainable approach. Case Stud Constr Mater, 17, e01404. [CrossRef]
  • 61. Tangadagi, R. B., Manjunatha, M., Seth, D., & Preethi, S. (2021). Role of mineral admixtures on strength and durability of high strength self-compacting concrete: An experimental study. Materialia, 18, 101144. [CrossRef]
  • 62. Manjunatha, M., Seth, D., & Balaji, K. V. G. D. (2021). Role of engineered fibers on fresh and mechanical properties of concrete prepared with GGBS and PVC waste powder - An experimental study. Mater Today Proc, 47, 3683-3693. [CrossRef]
  • 63. Pradhan, S., Tiwari, B. R., Kumar, S., & Barai, S. V. (2019). Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix. J Clean Prod, 228, 679-691. [CrossRef]
  • 64. Teixeira, E. R., Mateus, R., Camoes, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J Clean Prod, 112, 2221-2230. [CrossRef]
  • 65. Manjunatha, M., Seth, D., Balaji, K. V. G. D., Roy, S., & Tangadagi, R. B. (2023). Utilization of industrial-based PVC waste powder in self-compacting concrete: A sustainable building material. J Clean Prod, 428, 139428. [CrossRef]
  • 66. Dharek, M. S., Manjunatha, M., Brijbhushan, S., Vengala, J., & Tangadagi, R. B. (2024). Performance evaluation of hybrid fiber reinforced concrete on engineering properties and life cycle assessment: A sustainable approach. J Clean Prod, 458, 142498. [CrossRef]
  • 67. Maddikeari, M., Das, B. B., Tangadagi, R. B., Roy, S., Nagaraj, P. B., & Ramachandra, M. L. (2024). A comprehensive review on use of wastewater in the manufacturing of concrete: Fostering sustainability through recycling. Recycling, 9(3), 45. [CrossRef]
  • 68. Gowsika, D. (2014). Experimental investigation of egg shell powder as partial replacement with cement in concrete. Int J Eng Trends Technol, 14(1), 65-68. [CrossRef]
  • 69. Sivakumar, M., & Mahendran, N. (2014). Strength and permeability properties of concrete using fly ash (FA), rice husk ash (RHA) and egg shell powder (ESP). J Theor Appl Inf Technol, 66(2), 489-499.
  • 70. Asman, N. S. A., Dullah, S., Ayog, J. L., Amaludin, A., Amaludin, H., Lim, C. H., & Baharum, A. (2017). Mechanical properties of concrete using eggshell ash and rice husk ash as partial replacement of cement. In MATEC Web Conf, 103, 01002. EDP Sciences. [CrossRef]
  • 71. Huijbregts, M. A., Hellweg, S., Frischknecht, R., Hendriks, H. W., Hungerbuhler, K., & Hendriks, A. J. (2010). Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol, 44(6), 2189-2196. [CrossRef]
  • 72. Technical Committee ISO/TC 207, Environmental Management. (2006). Environmental management - Life cycle assessment - Principles and framework. International Organization for Standardization.
  • 73. Mellino, S., Petrillo, A., Cigolotti, V., Autorino, C., Jannelli, E., & Ulgiati, S. (2017). A life cycle assessment of lithium battery and hydrogen-FC powered electric bicycles: Searching for cleaner solutions to urban mobility. Int J Hydrogen Energy, 42(3), 1830-1840. [CrossRef]
  • 74. Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag, 30(11), 2255-2264. [CrossRef]
  • 75. Khasreen, M. M., Banfill, P. F., & Menzies, G. F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3), 674-701. [CrossRef]
  • 76. Junnila, S., Horvath, A., & Guggemos, A. A. (2006). Life-cycle assessment of office buildings in Europe and the United States. J Infrastruct Syst, 12(1), 10-17. [CrossRef]
  • 77. Schneider, L., Berger, M., & Finkbeiner, M. (2011). The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess, 16, 929-936. [CrossRef]
  • 78. Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., … & Wernet, G. (2013). Overview and methodology: Data quality guideline for the ecoinvent database version 3. https://vbn.aau.dk/ws/portalfiles/portal/176769045/Overview_and_methodology.pdf
  • 79. PlasticsEurope. (2003). Eco-profiles of the European plastics industry. http://www.inference.org.uk/sustainable/LCA/elcd/external_docs/petb_31116f00-fabd-11da-974d-0800200c9a66.pdf
  • 80. PRé Sustainability. (2024). SimaPro 9.6. PRé Sustainability.
  • 81. Consultants, P. (2000). Eco-indicator 99 manual for designers. Ministry of Housing, Spatial Planning and the Environment, The Hague, The Netherlands.
  • 82. Fahad, F., Hossain, M. I., Alam, M. N., Roy, A. K., & Jaher, F. B. (2024). Assessing the concrete compressive strength through partial replacement of cement with composite waste (a mixture of waste glass powder and sawdust ash). Proceedings of the 7th International Conference on Civil Engineering for Sustainable Development, Khulna, Bangladesh.
  • 83. Kumar, N., Pali, H. S., Sonthalia, A., & Sidharth. (2022). Higher alcohols as diesel engine fuel. In Gupta, A. K., De, A., Aggarwal, S. K., Kushari, A., & Runchal, A. K. (Eds.), Advances in energy and combustion (pp. [chapter pages]). Green Energy and Technology. Springer, Singapore. [CrossRef]
  • 84. US Environmental Protection Agency. (n.d.). Archived technical factsheet on 1,1,1-trichloroethane. US EPA Archive Document.
  • 85. Weerakoon, H. P. A. T., Atapaththu, K. S. S., & Asanthi, H. B. (2018). Toxicity evaluation and environmental risk assessment of 2-methyl-4-chlorophenoxy acetic acid (MCPA) on non-target aquatic macrophyte Hydrilla verticillata. Environ Sci Pollut Res, 25, 30463-30474. [CrossRef]
  • 86. de Castro Marcato, A. C., de Souza, C. P., & Fontanet, C. S. (2017). Herbicide 2,4-D: A review of toxicity on non-target organisms. Water Air Soil Pollut, 228, 120. [CrossRef]
There are 86 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Farhan Fahad 0009-0001-9802-9578

Kaysarul Islam Bhuiyan 0009-0009-0165-4560

Faysal Montasir This is me 0009-0008-9659-2149

Pritom Dey This is me 0009-0007-2080-7855

Md. Arif Arman Akash 0009-0007-3678-0140

Ajoy Kumer 0000-0001-5136-6166

Publication Date March 29, 2025
Submission Date November 22, 2024
Acceptance Date February 28, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Fahad, F., Bhuiyan, K. I., Montasir, F., Dey, P., et al. (2025). Evaluating the use of eggshell powder and sawdust ash as cement replacements in sustainable concrete development. Journal of Sustainable Construction Materials and Technologies, 10(1), 1-21. https://doi.org/10.47481/jscmt.1667601

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr