Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapısal, Spektroskopik ve Elektronik Özellikler Üzerine Ab-initio Çalışması (E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazen Azo boyaları Molekül

Yıl 2022, Cilt: 4 Sayı: 2, 193 - 208, 31.12.2022

Öz

(E)-1-(4-Methoxyanthracen-1-yl)-2-phenoldiazene veya C_21 H_16 N_2 O, günümüzde birçok endüstride bir algılayıcı molekül olarak en çok kullanılan bileşik olan tautomer azo boyalarından biridir. Bildiğimiz gibi, mevcut ticari azo boyaların %90'dan fazlası totomerik boyalardır (Kelemen, 1981). Kuantum kimyası hesaplamaları, gelecekteki uygulamalar için moleküler bileşiklerin yapıları ve elektrokimyasal özellikleri arasındaki ilişkiyi netleştirebilir. Deneysel ve teorik hesaplamaların karşılaştırılması, doğru atamaların yapılmasında ve moleküler yapılar ile özellikleri arasındaki ilişkinin anlaşılmasında çok faydalı olabilir. Bu çalışmada temel amaç, başlık molekülünün ((E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene) yapısal geometrilerinin, ab-initio yöntemi kullanılarak spektroskopik ve elektronik özelliklerinin karakterize edilmesidir. yoğunluk fonksiyonel teorisi (DFT) üzerine (Becke, 1988; Becke, 1993). Temel durumdaki başlık molekülünün moleküler geometrisi ve titreşim spektroskopisi, 6-311G (d,p) temel seti ile DFT/B3LYP yöntemi uygulanarak hesaplanmıştır. Bağ uzunluğu, bağ açısı ve dihedral açı gibi yapısal özellikler, mevcut deney verileriyle mükemmel bir uyum içindedir (Crochet ve diğerleri, 2011). Başlık molekülünün 114 titreşim modu, germe, düzlem içi bükülme, düzlem dışı bükülme ve burulma titreşimleri ile belirtilmiştir. Dimetil sülfoksit (DMSO) çözücü içindeki UV absorpsiyon spektrumları, zamana bağlı yoğunluk fonksiyonel teorisi (TD-DFT) kullanılarak tahmin edilmiştir (Ronca ve diğerleri, 2014). Ayrıca, DFT/B3LYP yöntemi dahilinde Gauge-Invariant Atomic Orbital (GIAO) yaklaşımı kullanılarak DMSO solventinde 1H ve 13C NMR kimyasal kaymaları hesaplanmıştır (Scott ve Radon, 1996; Wolinskiet ve diğerleri, 1997). Son olarak, başlık molekülünün elektronik özellikleri, En Düşük Boş Moleküler Orbital - En Yüksek Dolu Moleküler Orbital (HOMO-LUMO) etkileşimini belirlemeyi sağlayan Koopman teoremi kullanılarak da elde edilmiştir (Sastri ve Perumareddi, 1997; Pearson, 1986). Bu molekülün, termodinamik olarak kararlı ve dayanıklı, düşük iyonizasyon potansiyel enerjisine (IP) işaret eden 1.5 eV'den büyük boşluk enerjisine (Örn) sahip olduğu, elektronunu kolayca kaybettiği için indirgeyici ajan olma eğiliminde olduğu, yaklaşık 2.43 eV elektron afinitesi olduğu bildirilebilir. (EA), iyi iletken özelliklere, başlık molekülünün polar bir karakter olduğunu gösteren yüksek elektronegatifliğe (x), düşük kimyasal sertlik değerine (ƞ) ve global elektrofiliklik indeksine sahip olduğunu belirtir.

Proje Numarası

Grant No: BAP-2021FEBE063

Kaynakça

  • Atay Ç.K., Ozdemir Kart S., Gökalp M., Tuğrul Ö., Tilki T., 2018. Characterization and absorption properties of newly synthesized mono azo dyes: Experimental and theoretical approach. ELSEVIER: Molecular Structure. 1 – 63.
  • Balci M., 2005. Basic 1H- and 13C-NMR Spectroscopy. ELSEVIER press. 25 – 85p.
  • Becke A.D., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. APS Physical Review A, 38: 3098–3100.
  • Bauernschmitt R., Ahlrichs R., 1996. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letter. 256:454e464.
  • Bayer E.B., Rochester N.Y., 1976. Color Imaging Array. United States Patent. United States. 350 – 317p.
  • Becke A.D., 1993. Density functional thermochemistry. III. The role of exact exchange. AIP The Journal of Chemical Physics. 7(98): 5648-5652.
  • Becker E.D., 2000. High Resolution NMR (Third Edition) Theory and Chemical Applications. Academic Press. 83-177p.
  • Blog: The Beer-Lambert Law. Available from: https://www.edinst.com/blog/the-beer-lambert-law/#:~:text=The%20Beer%2DLambert%20law%20states,calculated%20by%20measuring%20its%20absorbance.
  • Cameron A.C., Windmeijer F.A.G., 1995. An R-squared measure of goodness of fit for some common nonlinear regression models. ELSEVIER: Journal of Econometrics. 77: 329 – 342.
  • Claramunt R.M., Lopez C., Maria D.S., Sanz D., 2006. The use of NMR spectroscopy to study tautomerism. ELSEVIER: Progress in Nuclear Magnetic Resonance Spectroscopy. 49: 169 – 206.
  • Crochet A., Fromm K.M., Kurteva V., Antonov L., 2011. (E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene. Acta Crystallographica, E67(o993): 1600 - 5368.
  • Ronca E., Angeli C., Belpassi L., Angelis F.D., Tarantelli F., Pastore M., 2014. Density relaxation in Time-Dependent Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States. ACS Publications: Journal of Chemical Theory and Computation.
  • Rong C., Wang B., Zhao D., Liu S., 2019. Information-theoretic approach in density functional theory and its recent applications to chemical problems. WIREs Comput Mol Sci. e146: 11 – 22.
  • Yıldırım F., Demirçalı A., Tunay Taşlı P., Karcı F., 2021. New disazo dyes derived from aminopyrazoles: synthesis, spectroscopic properties, computational study and structural properties. Coloration Technology. 00: 1 -12.
  • Lee H.Y., Song X., Park H., Baik M.H., Lee D., 2010. Torsionally Responsive C_3-Symmetric Azo Dyes: Azo-Hydrazone Tautomerism, Conformational Switching, and Application for Chemical Sensing. JACS Articles. 132: 12133-12144.
  • Jamroz M.H., Dobrowolski J.Cz., 2001. Potential energy distribution (PED) analysis of DFT calculated IR spectra of the most stable Li, Na, and Cu(I) diformate molecules. ELSEVIER: Journal of Molecular Structure. 565 – 566: 475 – 480.
  • John E., 1988. The Elements 3. Oxford Clarendon Press. New York.
  • Kelemen J., 1981. Azo-hydrazone tautomerism in azo dyes. I. A comparative study of 1-phenylazo-2-naphthol and 1-phenylazo-2-naphthylamine derivatives by electronic spectroscopy.ELSEVIER: Dyes and Pigments. 2(2): 73–91.
  • Kohn W., Sham L.J., 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review. 140(4A): A1133-A1138.
  • Wolinski K., Haacke R., Hinton J.F., Pulay P., 1997. Methods for parallel computation of SCF NMR chemical shifts by GIAO method: Efficient integral calculation, multi-Fock algorithm, and pseudodiagonalization, Journal of Computational Chemistry. 18(6): 816–825.
  • Lee T.D., Yang C.N., 1959. Many-Body Problem in Quantum Statistical Mechanics. I. General Formulation. Physical Review. 113(5): 1165 – 1177.
  • Reichenbacher M., Popp J., 2012. Challenges in Molecular Structure Determination. Springer-Verlag Berlin Heidelberg. 63-143.
  • McLean A.D., Chandler G.S., 1980. Contracted Gaussian basis set for molecular calculations. I. Second row atoms, Z=11-18. AIP The Journal of Chemical Physics. 72(10): 5639 – 5648.
  • Jamroz M.H., 2013. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. ELSEVIER: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 114: 220 – 230.
  • Habibi M.H., Hassanzadeh A., Isfahani A.Z., 2006. Effect of dye aggregation and azo-hydrazone tautomerism on the photocatalytic degradation of Solophenyl red 3BL azo dye using aqueous TIO_2 suspension. ELSEVIER: Dyes and Pigments. 69: 111 -117.
  • Perez P., Domingo L.R., Aizman A., Contreras R., 2007. The Electrophilicity index in organic chemistry. Elsevier B. V. Publishing. 140 – 197p.
  • Coelho P.J., Castro C.R., Fernandes S.S.M., Forcensa A.M.C., Raposo M.M., 2012. Enhancement of the photochromic switching speed of bithiophene azo dyes. ELSEVIER: Tetrahedron Letters. 53: 4502 – 4506.
  • Tunay Taşlı P., Atay Ç.K., Demirturk.T., Tilki T., 2020. Experimental and computational studied of newly synthesized azo dyes based materials. ELSEVIER: Journal of Molecular Structure. 1201: 127098.
  • Pearson R.G., 1986. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences: Research Article. 83(22): 8440-8441.
  • Pearson R.G., 1997. Chemical Hardness. John Wiley-VCH, Weinheim 175 – 195p.
  • Behera P.K., Xess A., Sahu S., 2014. Solvent Effect on the Electronic Spectra of Some Heterocyclic Azo Dyes. Bull Korean Chemistry Society, 35(2): 610 – 616.
  • Alsantali R.I., Raja Q.A., Alzahrani A.Y.A., Sadiq A., Naeem N., Mughal E.U., Al-Rooqi M.M., Guesmi N.E., Moussa Z., Ahmed S.A., 2022. Miscellaneous azo dyes: a comprehensive review on recent advancements in biological and industrial applications. ELSEVIER: Dyes and Pigments. 199:110050.
  • Harris R.K., 2004. NMR crystallography: the use of chemical shifts. ELSEVIER: Solid State Sciences. 6: 1025-1037.
  • Benkhaya S., M’rabet S., Harfi A.E., 2020. Classifications, properties, recent synthesis and applications of azo dyes. Cellpress: Heliyon. 6(e03271): 1-26.
  • Sastri V.S., Perumareddi J.R., 1997. Molecular Orbital Theoretical Studies of Some Organic Corrosion Inhibitors. Corrosion Science. 53: 671 – 622.
  • Kaya S., Kaya C., 2015. A New Method for Calculation of Molecular Hardness: A Theoretical Study. Computational and Theoretical Chemistry.
  • Scott A.P., Radon L., 1996. Harmonic Vibrational Frequencies:  An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. Journal of Physical Chemistry. 100: 16502-16513.
  • Shawali A.L., Abdallah M.A., Mosselhi M.A.N., Elhorbany Y.F., 2002. Synthesis and tautomeric structure of 1,2-bis-(7-arylhydrazono-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl) ethanes. Walter de Gruyter GmbH. 552–556.
  • Spectroscopy Data Tables: Infrared Tables. Available from: https://www.cpp.edu/~psbeauchamp/pdf/spec_ir_nmr_spectra_tables.pdf Chen X.C., Tao T., Wang Y.G., Peng Y.X., Huang W., Qian H.F., 2012. Azo-hydrazone tautomerism observed from UV-Vis spectra by pH control and metal-ion complexation for two heterocyclic disperse yellow dyes. Dalton Transactions, 41: 11107–11115.
  • Huang Y., Yr Q., Li., Zheng M., Yan B., et al., 2022. Preparation of a redox mediator membrane and its application to catalyzing biodegradation of azo dyes. ELSEVIER: Journal of Environmental Chemical Engineering. 10(3): 107778.

Ab-initio Study on Structural, Spectroscopic, and Electronic Properties of (E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene Azo dyes Molecule

Yıl 2022, Cilt: 4 Sayı: 2, 193 - 208, 31.12.2022

Öz

(E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene or C_21 H_16 N_2 O is one of the tautomer azo dyes which is the most usable compound in several industries as a sensing molecule, nowadays. As we know, more than 90% of the existing commercial azo dyes are tautomeric ones (Kelemen, 1981). Quantum chemistry calculations can clarify the relationship between structures and electrochemical properties of molecular compounds for future applications. A comparison of the experimental and theoretical calculations can be very useful in making correct assignments and understanding the relationship between molecular structures and their properties. In this study, the main purpose is to characterize the structural geometries of the title molecule ((E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene), spectroscopic and electronic properties by utilizing ab-initio method based on density functional theory (DFT) (Becke, 1988; Becke, 1993). The molecular geometry and vibrational spectroscopy of the title molecule, in the ground state, have been computed by applying DFT/B3LYP method with the basis set of 6-311G (d,p). The structural properties, such as bond length, bond angle, and dihedral angle, are in excellent agreement with those of available experiment data (Crochet et al., 2011). 114 vibrational modes of the title molecule have been specified with stretching, in-plane-bending, out-of-plane-bending, and torsion vibrations. UV absorption spectra within dimethyl sulfoxide (DMSO) solvent have been predicted by using the time-dependent density functional theory (TD-DFT) (Ronca et al., 2014). Moreover, 1H and 13C NMR chemical shifts have been computed in DMSO solvent by using the Gauge-Invariant Atomic Orbital (GIAO) approach within DFT/B3LYP method (Scott and Radon, 1996; Wolinskiet et al., 1997). Finally, the electronic properties of the title molecule have been also attained by using Koopman’s theorem enable to determine the Lowest Unoccupied Molecular Orbital - Highest Occupied Molecular Orbital (HOMO-LUMO) interaction (Sastri and Perumareddi, 1997; Pearson, 1986). It can be reported that this molecule has gap energy (Eg) bigger than 1.5 eV which indicates thermodynamically stable and durable, low ionization potential energy (IP) which tends to be reducing agents because it is easily losing its electron, about 2.43 eV electron affinity (EA) which denotes that it has good conductive properties, high electronegativity (x) which shows that the title molecule is a polar character, low value of chemical hardness (ƞ) and global electrophilicity index.

Destekleyen Kurum

Pamukkale University

Proje Numarası

Grant No: BAP-2021FEBE063

Teşekkür

Pamukkale University

Kaynakça

  • Atay Ç.K., Ozdemir Kart S., Gökalp M., Tuğrul Ö., Tilki T., 2018. Characterization and absorption properties of newly synthesized mono azo dyes: Experimental and theoretical approach. ELSEVIER: Molecular Structure. 1 – 63.
  • Balci M., 2005. Basic 1H- and 13C-NMR Spectroscopy. ELSEVIER press. 25 – 85p.
  • Becke A.D., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. APS Physical Review A, 38: 3098–3100.
  • Bauernschmitt R., Ahlrichs R., 1996. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letter. 256:454e464.
  • Bayer E.B., Rochester N.Y., 1976. Color Imaging Array. United States Patent. United States. 350 – 317p.
  • Becke A.D., 1993. Density functional thermochemistry. III. The role of exact exchange. AIP The Journal of Chemical Physics. 7(98): 5648-5652.
  • Becker E.D., 2000. High Resolution NMR (Third Edition) Theory and Chemical Applications. Academic Press. 83-177p.
  • Blog: The Beer-Lambert Law. Available from: https://www.edinst.com/blog/the-beer-lambert-law/#:~:text=The%20Beer%2DLambert%20law%20states,calculated%20by%20measuring%20its%20absorbance.
  • Cameron A.C., Windmeijer F.A.G., 1995. An R-squared measure of goodness of fit for some common nonlinear regression models. ELSEVIER: Journal of Econometrics. 77: 329 – 342.
  • Claramunt R.M., Lopez C., Maria D.S., Sanz D., 2006. The use of NMR spectroscopy to study tautomerism. ELSEVIER: Progress in Nuclear Magnetic Resonance Spectroscopy. 49: 169 – 206.
  • Crochet A., Fromm K.M., Kurteva V., Antonov L., 2011. (E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene. Acta Crystallographica, E67(o993): 1600 - 5368.
  • Ronca E., Angeli C., Belpassi L., Angelis F.D., Tarantelli F., Pastore M., 2014. Density relaxation in Time-Dependent Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States. ACS Publications: Journal of Chemical Theory and Computation.
  • Rong C., Wang B., Zhao D., Liu S., 2019. Information-theoretic approach in density functional theory and its recent applications to chemical problems. WIREs Comput Mol Sci. e146: 11 – 22.
  • Yıldırım F., Demirçalı A., Tunay Taşlı P., Karcı F., 2021. New disazo dyes derived from aminopyrazoles: synthesis, spectroscopic properties, computational study and structural properties. Coloration Technology. 00: 1 -12.
  • Lee H.Y., Song X., Park H., Baik M.H., Lee D., 2010. Torsionally Responsive C_3-Symmetric Azo Dyes: Azo-Hydrazone Tautomerism, Conformational Switching, and Application for Chemical Sensing. JACS Articles. 132: 12133-12144.
  • Jamroz M.H., Dobrowolski J.Cz., 2001. Potential energy distribution (PED) analysis of DFT calculated IR spectra of the most stable Li, Na, and Cu(I) diformate molecules. ELSEVIER: Journal of Molecular Structure. 565 – 566: 475 – 480.
  • John E., 1988. The Elements 3. Oxford Clarendon Press. New York.
  • Kelemen J., 1981. Azo-hydrazone tautomerism in azo dyes. I. A comparative study of 1-phenylazo-2-naphthol and 1-phenylazo-2-naphthylamine derivatives by electronic spectroscopy.ELSEVIER: Dyes and Pigments. 2(2): 73–91.
  • Kohn W., Sham L.J., 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review. 140(4A): A1133-A1138.
  • Wolinski K., Haacke R., Hinton J.F., Pulay P., 1997. Methods for parallel computation of SCF NMR chemical shifts by GIAO method: Efficient integral calculation, multi-Fock algorithm, and pseudodiagonalization, Journal of Computational Chemistry. 18(6): 816–825.
  • Lee T.D., Yang C.N., 1959. Many-Body Problem in Quantum Statistical Mechanics. I. General Formulation. Physical Review. 113(5): 1165 – 1177.
  • Reichenbacher M., Popp J., 2012. Challenges in Molecular Structure Determination. Springer-Verlag Berlin Heidelberg. 63-143.
  • McLean A.D., Chandler G.S., 1980. Contracted Gaussian basis set for molecular calculations. I. Second row atoms, Z=11-18. AIP The Journal of Chemical Physics. 72(10): 5639 – 5648.
  • Jamroz M.H., 2013. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. ELSEVIER: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 114: 220 – 230.
  • Habibi M.H., Hassanzadeh A., Isfahani A.Z., 2006. Effect of dye aggregation and azo-hydrazone tautomerism on the photocatalytic degradation of Solophenyl red 3BL azo dye using aqueous TIO_2 suspension. ELSEVIER: Dyes and Pigments. 69: 111 -117.
  • Perez P., Domingo L.R., Aizman A., Contreras R., 2007. The Electrophilicity index in organic chemistry. Elsevier B. V. Publishing. 140 – 197p.
  • Coelho P.J., Castro C.R., Fernandes S.S.M., Forcensa A.M.C., Raposo M.M., 2012. Enhancement of the photochromic switching speed of bithiophene azo dyes. ELSEVIER: Tetrahedron Letters. 53: 4502 – 4506.
  • Tunay Taşlı P., Atay Ç.K., Demirturk.T., Tilki T., 2020. Experimental and computational studied of newly synthesized azo dyes based materials. ELSEVIER: Journal of Molecular Structure. 1201: 127098.
  • Pearson R.G., 1986. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences: Research Article. 83(22): 8440-8441.
  • Pearson R.G., 1997. Chemical Hardness. John Wiley-VCH, Weinheim 175 – 195p.
  • Behera P.K., Xess A., Sahu S., 2014. Solvent Effect on the Electronic Spectra of Some Heterocyclic Azo Dyes. Bull Korean Chemistry Society, 35(2): 610 – 616.
  • Alsantali R.I., Raja Q.A., Alzahrani A.Y.A., Sadiq A., Naeem N., Mughal E.U., Al-Rooqi M.M., Guesmi N.E., Moussa Z., Ahmed S.A., 2022. Miscellaneous azo dyes: a comprehensive review on recent advancements in biological and industrial applications. ELSEVIER: Dyes and Pigments. 199:110050.
  • Harris R.K., 2004. NMR crystallography: the use of chemical shifts. ELSEVIER: Solid State Sciences. 6: 1025-1037.
  • Benkhaya S., M’rabet S., Harfi A.E., 2020. Classifications, properties, recent synthesis and applications of azo dyes. Cellpress: Heliyon. 6(e03271): 1-26.
  • Sastri V.S., Perumareddi J.R., 1997. Molecular Orbital Theoretical Studies of Some Organic Corrosion Inhibitors. Corrosion Science. 53: 671 – 622.
  • Kaya S., Kaya C., 2015. A New Method for Calculation of Molecular Hardness: A Theoretical Study. Computational and Theoretical Chemistry.
  • Scott A.P., Radon L., 1996. Harmonic Vibrational Frequencies:  An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. Journal of Physical Chemistry. 100: 16502-16513.
  • Shawali A.L., Abdallah M.A., Mosselhi M.A.N., Elhorbany Y.F., 2002. Synthesis and tautomeric structure of 1,2-bis-(7-arylhydrazono-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl) ethanes. Walter de Gruyter GmbH. 552–556.
  • Spectroscopy Data Tables: Infrared Tables. Available from: https://www.cpp.edu/~psbeauchamp/pdf/spec_ir_nmr_spectra_tables.pdf Chen X.C., Tao T., Wang Y.G., Peng Y.X., Huang W., Qian H.F., 2012. Azo-hydrazone tautomerism observed from UV-Vis spectra by pH control and metal-ion complexation for two heterocyclic disperse yellow dyes. Dalton Transactions, 41: 11107–11115.
  • Huang Y., Yr Q., Li., Zheng M., Yan B., et al., 2022. Preparation of a redox mediator membrane and its application to catalyzing biodegradation of azo dyes. ELSEVIER: Journal of Environmental Chemical Engineering. 10(3): 107778.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atomik, Moleküler ve Optik Fizik, Doğrusal Olmayan Optik ve Spektroskopi
Bölüm Makaleler
Yazarlar

Arini Qurrata Ayun 0000-0002-4739-0507

Pinar Tasli 0000-0001-6580-9765

Sevgi Özdemir Kart 0000-0001-5706-7722

Proje Numarası Grant No: BAP-2021FEBE063
Erken Görünüm Tarihi 25 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 15 Haziran 2022
Kabul Tarihi 14 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ayun, A. Q., Tasli, P., & Özdemir Kart, S. (2022). Ab-initio Study on Structural, Spectroscopic, and Electronic Properties of (E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene Azo dyes Molecule. Journal of Spectroscopy and Molecular Sciences, 4(2), 193-208.