Research Article
BibTex RIS Cite

GMRT Rüzgar Türbünün Diğer Güç Rüzgar Türbünleriyle ile Efektif Olarak Karşılaştırılması

Year 2017, , 69 - 79, 05.03.2017
https://doi.org/10.17475/kastorman.296495

Abstract

Bu çalışmada Gelibolu
Model Rüzgâr Türbini (GMRT) ve üç adet PTDW (güç-işleme yönlendirme kanadı)
oluşan gelişmiş özel bir türbin tasarım araştırlmıştır. Bu model, dikey türbin
türbinlerinin (DARRIEUS) tip güç kanatlarının özel bir parçasıdır.
PTDW kanatları negatif
rüzgâr enerjilerini pozitif ek bir vakum gücüne dönüştürür ve katkı,
türbinlerin güç kanatlarının verimliliğini, diğer geleneksel dikey şaft rüzgâr
türbinleriyle orantılı olarak 5 kat artırır. Güç dengesinin diğer modellerden
çok daha etkili olduğunu gösteriyor.
Çalışmamız gösteriyorki, bu
model çevre için daha uygundur. Türbinin aerodinamik etki bölgesi tarama
alanına kıyasla geniş olduğundan, türbinin toplam maliyeti, diğer rüzgâr
türbinlerine göre kilovat başına maliyet ve tam kapasite maliyeti açısından
daha az maliyetlidir.
Tasarladığı üstünlük sayesinde oluşur. Bu
çalışmada, türbin gücü ve üstün tasarım bakımından simülasyon hesaplamaları
Monte Carlo bilgisayar yöntemi kullanılmıştır.

References

  • Ackermann T., 2005. Windpower in power systems print ISBN: 9780470855089.
  • Akdağ SA and Güler Ö., 2010. Evalution of wind energy investment interest and electricity generation cost analysis for turkey, applied energy 87, 2574-2580
  • Aras H., 2003. Wind energy status and its assessment in Turkey. Renewable Energy, 28, 2213-2220.
  • Byon E, Ntaimo L and Ding Y., 2010. Optimal maintenance strategiesfor wind turbine systemsunder stochastic weather conditions, IEEE transactıons on reliability, 59 (2),393-404.
  • Ertek, G, Asian S., Haksoz,C., Pakter, S., Ulun.,S., 2016. Wind Turbine Accidents: A Data Mining Study., IEEE Systems Journal, vol: PP, issue: 99, Pages: 1 - 12, DOI: 10.1109/JSYST.2016.2565818.
  • EuropeanWindEnergyAssociation Report, 2013a .deepwater, thenext step for offshore windenergy.
  • EuropeanWindEnergyAssociation Report., 2013b. The European offshore wind ındustry keytrend sand statistics.
  • Güler Ö. 2009. Wind energy status in electrical energy production of Turkey: Renewable and sustainable energy reviews 13,473-478.
  • Güleren KM and Demir S., 2011. Performance analysis of different airfoils for turbine blades at low angles of attack. J.of thermal science and technology, 31,51-59.
  • Haessig P, Multon B., 2015. Energy Storage ControlwithAgingLimitation.PowerTechconference.
  • Hançerlioğulları, A., 2006. Monte Carlo Simulation and mcnp Code System. Kastamonu Universitiy education of journal 2,545-556.
  • Hansen NY, Sorensen JN,Voutsinas S, Sorensen N, Madsen HA., 2006. State of theartinwindturbineaerodynamicsandaeroelasticity. Prog.Aerosp.Sci. 42, 285–330.
  • Hau E. 2005. Wind turbines, fundamentals, technologies, application, economics, ısbnno: 3-540-57064-0.
  • Holttinen H, Orths AG. Currents of change. Ieee power&energy magazine 2011; 9(6),47–59.
  • Kooijman HJT, Lindenburg C, Winkelaar D, van der Hooft EL., 2003. Dowec 6 Mwpre-design. aero-elastic modelling of thedowec 6,mwpre-design in phatas, dowec-f1w2-hjk-01-046/9publicversion.
  • Le Gourieres, D., 1982. Wind power plants, theory and design. Pergamon press.
  • Luo N, Pacheco L, Vidal Y, Li H., 2012. Smart structural control strategies for offshore wind power generation with floating wind turbines. Proceedings of the international conference on renewable energy sand power quality, santiago de compostel -Spain.
  • Marmidis G, Lazerou S, Pyrigioti E., 2008.
  • Menter FR., 1994. Two-equationeddy-viscosityturbulencemodelsforengineringapplications. AIAAJ; 32(8), 1598–1605.
  • Optimal placement of windturbines in a wind park using Monte Carlo simulation, renewable energy. 33, 1455-1460.
  • Penedo RJM, 2008. Aero-elastic bladeoptimizationfor an urban windturbine.
  • Ragheb M, Ragheb A., 2011. Wind turbines theory-the Betz equation and optimal rotor tip speed ratio.
  • Randolph J and Master G, 2008. Energyforsustainability: technology, planning, ısbn-13: 978-1597261036.
  • Rethore PE, Fuglsang P, Larsen GC, Buhl T. Laesen TJ, Aagaard MHT., 2014. Multi-fidelityoptimization of windfarms, WindEnergy. 17(12), 1797-1816.
  • Sarun B., 2006. Computationa lstudies of horizontalaxiswindturbines in high wind speed condition using advanced turbulence models. Georgia Institute of Technology, United States.
  • SebastianT, Lackner MA., 2012. Development of a free vortex wake method code for off shore floating wind turbines: renew energy, 46,269–275.
  • Şener YA., 1995. Comparison of efficiency parameters in “gelibolu model” wind turbine.Tubitak technical report.
  • Song DL, Yang ZX.,2015,.Design, simulation and optimization of a novel permanent magnetic driver for vertical axis wind turbine,ieee 12th international conference on networking, sensing and control howard civil service ınternational house, taipei, Taiwan.
  • Butterfield S, Musial W, Jonkman J, SclavounosP, 2005. Engineering ch
  • Tande JO., 2005. Power quality standards for wind turbines, wind power in power systems.
  • Toan T.T, Kim D.H,2015. The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis, Journal of Wind Engineering and Industrial Aerodynamics.,142(2015)65–81.
  • Uslu N, Peker İ, Ünal S, Nasırlı C. ,2012. Alternative sources of wood consumption in ilgaz mountain forest villages and their effects on the protection of forests, mountains of turkey, First National Symposium, Kastamonu.
  • Windtürbine, RST Technology,2015. Http://www.renewablesystemstechnology.com/diy-tutorials.

Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind

Year 2017, , 69 - 79, 05.03.2017
https://doi.org/10.17475/kastorman.296495

Abstract

In this study, we
investigated a special design, advanced wind turbine, which is comprised of
Gelibolu Model Wind Turbine (GMRT) and three PTDW
(power-treatment-directing-wing) type wings integrated. This model is vertical
spindle turbines (DARRIEUS) type power wings. PTDW wings transform the negative
wind powers into a positive additional vacuum power and this contribution
multiplies the productivity of turbine’s power wings by as much as  5 times in proportion to other traditional
vertical shaft wind turbines. It show that power balance  is effective  much more than other models .This model is
more suitable for the environment that it is the conclusion gained  from the data. Since the turbine’s
aerodynamic effect zone is wide compared to the scanning area, the total cost
of the turbine is less compared to the other wind turbines in terms of per
kilowatt cost and full capacity cost. It comprises thanks to the superiority
provided by its design. In this study, we used Monte Carlo computer simulation
method for the calculations of turbine power and about effective
.

References

  • Ackermann T., 2005. Windpower in power systems print ISBN: 9780470855089.
  • Akdağ SA and Güler Ö., 2010. Evalution of wind energy investment interest and electricity generation cost analysis for turkey, applied energy 87, 2574-2580
  • Aras H., 2003. Wind energy status and its assessment in Turkey. Renewable Energy, 28, 2213-2220.
  • Byon E, Ntaimo L and Ding Y., 2010. Optimal maintenance strategiesfor wind turbine systemsunder stochastic weather conditions, IEEE transactıons on reliability, 59 (2),393-404.
  • Ertek, G, Asian S., Haksoz,C., Pakter, S., Ulun.,S., 2016. Wind Turbine Accidents: A Data Mining Study., IEEE Systems Journal, vol: PP, issue: 99, Pages: 1 - 12, DOI: 10.1109/JSYST.2016.2565818.
  • EuropeanWindEnergyAssociation Report, 2013a .deepwater, thenext step for offshore windenergy.
  • EuropeanWindEnergyAssociation Report., 2013b. The European offshore wind ındustry keytrend sand statistics.
  • Güler Ö. 2009. Wind energy status in electrical energy production of Turkey: Renewable and sustainable energy reviews 13,473-478.
  • Güleren KM and Demir S., 2011. Performance analysis of different airfoils for turbine blades at low angles of attack. J.of thermal science and technology, 31,51-59.
  • Haessig P, Multon B., 2015. Energy Storage ControlwithAgingLimitation.PowerTechconference.
  • Hançerlioğulları, A., 2006. Monte Carlo Simulation and mcnp Code System. Kastamonu Universitiy education of journal 2,545-556.
  • Hansen NY, Sorensen JN,Voutsinas S, Sorensen N, Madsen HA., 2006. State of theartinwindturbineaerodynamicsandaeroelasticity. Prog.Aerosp.Sci. 42, 285–330.
  • Hau E. 2005. Wind turbines, fundamentals, technologies, application, economics, ısbnno: 3-540-57064-0.
  • Holttinen H, Orths AG. Currents of change. Ieee power&energy magazine 2011; 9(6),47–59.
  • Kooijman HJT, Lindenburg C, Winkelaar D, van der Hooft EL., 2003. Dowec 6 Mwpre-design. aero-elastic modelling of thedowec 6,mwpre-design in phatas, dowec-f1w2-hjk-01-046/9publicversion.
  • Le Gourieres, D., 1982. Wind power plants, theory and design. Pergamon press.
  • Luo N, Pacheco L, Vidal Y, Li H., 2012. Smart structural control strategies for offshore wind power generation with floating wind turbines. Proceedings of the international conference on renewable energy sand power quality, santiago de compostel -Spain.
  • Marmidis G, Lazerou S, Pyrigioti E., 2008.
  • Menter FR., 1994. Two-equationeddy-viscosityturbulencemodelsforengineringapplications. AIAAJ; 32(8), 1598–1605.
  • Optimal placement of windturbines in a wind park using Monte Carlo simulation, renewable energy. 33, 1455-1460.
  • Penedo RJM, 2008. Aero-elastic bladeoptimizationfor an urban windturbine.
  • Ragheb M, Ragheb A., 2011. Wind turbines theory-the Betz equation and optimal rotor tip speed ratio.
  • Randolph J and Master G, 2008. Energyforsustainability: technology, planning, ısbn-13: 978-1597261036.
  • Rethore PE, Fuglsang P, Larsen GC, Buhl T. Laesen TJ, Aagaard MHT., 2014. Multi-fidelityoptimization of windfarms, WindEnergy. 17(12), 1797-1816.
  • Sarun B., 2006. Computationa lstudies of horizontalaxiswindturbines in high wind speed condition using advanced turbulence models. Georgia Institute of Technology, United States.
  • SebastianT, Lackner MA., 2012. Development of a free vortex wake method code for off shore floating wind turbines: renew energy, 46,269–275.
  • Şener YA., 1995. Comparison of efficiency parameters in “gelibolu model” wind turbine.Tubitak technical report.
  • Song DL, Yang ZX.,2015,.Design, simulation and optimization of a novel permanent magnetic driver for vertical axis wind turbine,ieee 12th international conference on networking, sensing and control howard civil service ınternational house, taipei, Taiwan.
  • Butterfield S, Musial W, Jonkman J, SclavounosP, 2005. Engineering ch
  • Tande JO., 2005. Power quality standards for wind turbines, wind power in power systems.
  • Toan T.T, Kim D.H,2015. The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis, Journal of Wind Engineering and Industrial Aerodynamics.,142(2015)65–81.
  • Uslu N, Peker İ, Ünal S, Nasırlı C. ,2012. Alternative sources of wood consumption in ilgaz mountain forest villages and their effects on the protection of forests, mountains of turkey, First National Symposium, Kastamonu.
  • Windtürbine, RST Technology,2015. Http://www.renewablesystemstechnology.com/diy-tutorials.
There are 33 citations in total.

Details

Journal Section Articles
Authors

Aybaba Hançerlıoğulları

Yavuz Ali Şener This is me

Sabri Ünal

Mertcan Karadeniz

Gülşah Hançerlıoğulları

Aslı Kurnaz

Atıf Çetiner

Salem Ashufat This is me

Yosef G.Ali Madee This is me

Seçil Karatay

Publication Date March 5, 2017
Published in Issue Year 2017

Cite

APA Hançerlıoğulları, A., Şener, Y. A., Ünal, S., Karadeniz, M., et al. (2017). Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind. Kastamonu University Journal of Forestry Faculty, 17(1), 69-79. https://doi.org/10.17475/kastorman.296495
AMA Hançerlıoğulları A, Şener YA, Ünal S, Karadeniz M, Hançerlıoğulları G, Kurnaz A, Çetiner A, Ashufat S, Madee YG, Karatay S. Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind. Kastamonu University Journal of Forestry Faculty. March 2017;17(1):69-79. doi:10.17475/kastorman.296495
Chicago Hançerlıoğulları, Aybaba, Yavuz Ali Şener, Sabri Ünal, Mertcan Karadeniz, Gülşah Hançerlıoğulları, Aslı Kurnaz, Atıf Çetiner, Salem Ashufat, Yosef G.Ali Madee, and Seçil Karatay. “Comparison of Design Gmrt Wind Turbine Plant Effectively With Other Power Wind”. Kastamonu University Journal of Forestry Faculty 17, no. 1 (March 2017): 69-79. https://doi.org/10.17475/kastorman.296495.
EndNote Hançerlıoğulları A, Şener YA, Ünal S, Karadeniz M, Hançerlıoğulları G, Kurnaz A, Çetiner A, Ashufat S, Madee YG, Karatay S (March 1, 2017) Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind. Kastamonu University Journal of Forestry Faculty 17 1 69–79.
IEEE A. Hançerlıoğulları, “Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind”, Kastamonu University Journal of Forestry Faculty, vol. 17, no. 1, pp. 69–79, 2017, doi: 10.17475/kastorman.296495.
ISNAD Hançerlıoğulları, Aybaba et al. “Comparison of Design Gmrt Wind Turbine Plant Effectively With Other Power Wind”. Kastamonu University Journal of Forestry Faculty 17/1 (March 2017), 69-79. https://doi.org/10.17475/kastorman.296495.
JAMA Hançerlıoğulları A, Şener YA, Ünal S, Karadeniz M, Hançerlıoğulları G, Kurnaz A, Çetiner A, Ashufat S, Madee YG, Karatay S. Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind. Kastamonu University Journal of Forestry Faculty. 2017;17:69–79.
MLA Hançerlıoğulları, Aybaba et al. “Comparison of Design Gmrt Wind Turbine Plant Effectively With Other Power Wind”. Kastamonu University Journal of Forestry Faculty, vol. 17, no. 1, 2017, pp. 69-79, doi:10.17475/kastorman.296495.
Vancouver Hançerlıoğulları A, Şener YA, Ünal S, Karadeniz M, Hançerlıoğulları G, Kurnaz A, Çetiner A, Ashufat S, Madee YG, Karatay S. Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind. Kastamonu University Journal of Forestry Faculty. 2017;17(1):69-7.

14178  14179       14165           14166           14167            14168