Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region

Yıl 2017, Cilt 17, Sayı 1, 132 - 142, 05.05.2017
https://doi.org/10.17475/kastorman.296912

Öz

Land use strongly influences soil properties, and unsuitable practices lead to degradation of soil and environmental quality. Main aim of this study was to assess the impact of different land uses on some soil properties, soil organic carbon (C) and total nitrogen (N) contents and stock capacities in Kastamonu, Turkey. Mature and young fir stands and adjacent pasture and agriculture sites were used to study the differences in some soil properties and soil organic C and N contents and stock capacities. Mineral soil samples were taken from two soil depths (the upper soil part 0-10 cm and the lower soil part 10-20 cm), and analysed for pH, texture, water holding capacity (WHC), salt, lime, organic matter (OM), P and K concentrations, total soil organic C and total N content, and stock capacities. Results showed that for the soil upper part, the agriculture site had the lowest clay, silt, WHC, pH, P, K and OM, whereas it had the highest sand content. Most of these soil factors were highest in the soil from mature fir stands. As for the lower soil part, there were no clear indications among the land-use types. However, the agriculture site had the highest clay, silt and soil pH, whereas the pasture site showed the lowest clay, silt, P and K contents. The mature and young fir stands always showed the highest mean soil C and N contents and stock capacities either at the upper or the lower soil parts, followed by the pasture and the agriculture sites. However, all soil depth was considered (0-20 cm), mean soil organic C stock capacity was highest for the pasture site (50.2 Mg C ha-1), followed by the young fir site (48.6 Mg C ha-1), the mature fir site (47.4 Mg C ha-1), and the agriculture site (32.3 Mg C ha-1). Mean soil total N stock capacity was highest for the young fir site (5.61 Mg N ha-1), followed by the pasture site (5.09 Mg N ha-1), the mature fir site (4.45 Mg N ha-1), and the agriculture site (3.33 Mg N ha1).  

Kaynakça

  • Allen S.E. 1989. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.
  • Arevalo C. B. M., Bhatti J. S., Chang S. X., Sidders D. 2009. Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. Forest Ecology and Management 257, 1776-1785.
  • Batlle-Aguilar J., Brovelli A., Porporato A., Barry D. A. 2011. Modelling soil carbon and nitrogen cycles during land use change. A review. Agronomy for Sustainable Development 31(2): 251–274
  • Baumert K., Pershing J., Herzog T., Markoff M. 2004. Climate Data: Insights and Observations. Pew Center on Global Climate Change. World Resources Institute, Arlington, VA.
  • Bouyoucos G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464-465.
  • Bruce J.P., Frome M., Haites E., Janzen H., Lal R., Paustian K. 1999. Carbon sequestration in soils, J. Soil Water Conservation. 54, 382–389.
  • Curtis P.-S., Hanson P.-J., Bolstad P., Barford C., Randolph J.-C., Schmid H.-P., Wilson K.-B. 2002. Biometric and eddy covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agriculture and Forestry Meteorology 113, 3–19.
  • Davidson E. A., Ackerman, I. L. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193.
  • de Moraes J.F.L., Volkoff B., Cerri C.C., Bernoux M. 1996. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil, Geoderma 70, 63–81.
  • Dumanski J. 2004. Carbon sequestration, soil conservation, and the Kyoto protocol: summary of implications. Climatic Change 65, 255–261.
  • Evrendilek F, Celik I, Kilic S. 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments. 59, 743–752
  • Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8, 345–360.
  • Gülçür F. 1974. Soil physical and chemical analysis methods. Istanbul University Forestry Faculty Publication no. 221, Kutulmus Press, Istanbul, Turkey, pp. 225.
  • Hobbie S.E. 2008. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89 (9), 2633-2644.
  • Houghton R.A. 1990. The future role of tropical forest in affecting the carbon dioxide concentration of the atmosphere, Ambio 19, 204.
  • Houghton R.A. 1999. The annual net flux of carbon to the atmosphere from changes in land-use 1850–1990. Tellus 51B, 298–313.
  • IPCC 1996. Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Chapter 5, Land-use Change and Forestry, p 76.
  • Islam K.R., Kamaluddin M., Bhuiyan M.K., Badruddin A. 1999. Comparative performance of exotic and indigenous forest species for tropical semi evergreen degraded forest land reforestation in Chittagong, Bangladesh, Land Degradation and Development 10, 241–249.
  • Jiang C., Yu G., Fang H., Cao G., Li Y. 2010. Shortterm effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environment 44 (24), 2920-2926.
  • Kimble J. M., Lal R., Follett R. R. 2002. Agricultural Practices and policy options for carbon sequestration: what we know and where we need to go. In Agricultural practices and policies for carbon sequestration in soil eds by Kimbel, J.M., R. Lal, and R.F. Follett. New York, Lewis Publishers, p 512.
  • Lal R. 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation and Development 14, 309–322.
  • Lecointe S., Claude NYS, Christian W, Françoise F, Sandrine H, Paula R, Stéphane F. 2006. Estimation of carbon stocks in a beech forest (Fougères Forest - W. France): extrapolation from the plots to the whole forest. Annals of Forest Science 63, 139-148.
  • Lee J., Hopmans J.W., Rolston D.E., Baer S.G., Six J. 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture Ecosystems and Environment 134, 251-256.
  • Motavalli P.P., Discekici H., Kuhn J. 2000. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer, Agriculture Ecosystem and Environment. 79, 17–27.
  • Murty D., Kirschbaum M.U.F., McMurtrie R.E., McGilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8, 105–123.
  • Osher L.J., Matson P.A., Amundson R. 2003. Effect of land use change on soil carbon in Hawaii. Biogeochemistry 65, 213-232.
  • Prévost M. 2004. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Journal of Soil Science Society of America. 68, 943–949
  • Reicosky D.C., Dugas W.A., Torbert H.A. 1997. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil and Tillage Research. 41, 105–118.
  • Reiners W.A., Bouwman A.F., Parsons W.F.J., Keller M. 1994. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecological Applications. 4, 363–377.
  • Sariyildiz T., Savacı G., Kravkaz İ.S. 2016. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwest of Turkey. iForest - Biogeosciences and Forestry. 9, 165-170.
  • Singh B.R., Lal R. 2005. The potential of soil carbon sequestration through improved management practices in Norway. Environment, Development and Sustainability. 7, 161–184.
  • Sonja A.H., Brandt C.C., Sardine P.M. 2005. Using soil physical and chemical properties to estimate bulk density. Journal of Soil Science Society of America. 69, 51–56.
  • Veldkamp E. 1994. Organic carbon turnover in three tropical soils under pasture after deforestation. Journal of Soil Science Society of America. 58, 175–180.
  • Vitousek P.M., Sanford R.L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics. 17, 137.

Kastamonu Yöresinde Farklı Arazi Kullanımının (Yaşlı ve Genç Göknar Meşcereleri-Mera-Tarım Alanları) Toprak Organik Karbon ve Toplam Azot Depolama Kapasitesine Etkileri

Yıl 2017, Cilt 17, Sayı 1, 132 - 142, 05.05.2017
https://doi.org/10.17475/kastorman.296912

Öz

Arazi kullanımı önemli derecede toprak özelliklerini etkilemekte ve uygun olmayan uygulamalar toprağın ve çevre kalitesinin bozulmasına yol açmaktadır. Kastamonu Bölgesinde gerçekleştirilen bu çalışmada, farklı arazi kullanımının bazı toprak özellikleri, organik karbon ve azot miktarları ve depolama kapasiteleri üzerine olan etkilerinin araştırılması amaçlanmıştır. Bu amaçla, yaşlı ve genç göknar meşçereleri ile bitişiğindeki tarım ve mera alanların bazı toprak özellikleri ile karbon ve azot depolama kapasiteleri belirlenmiştir. Mineral toprak örnekleri üst (0- 10 cm) ve alt (10-20 cm) olmak üzere iki farklı toprak derinlik kademesinden alınmış olup, sırasıyla bu topraklarda tekstür, su tutma kapasitesi, elektriksel iletkenlik, kireç miktarı, organik madde, fosfor (P) ve potasyum (K) konsantrasyonları yanında toplam organik karbon ve azot miktarları analiz edilmiştir. Sonuçlar incelendiğinde, üst toprak kısımlarında, en düşük kil, toz, su tutma kapasitesi, pH, P, K ve organik madde miktarı ile en yüksek kum miktarı tarım alanları topraklarında tespit edilmiştir. Üst toprak özelliklerinin çoğunluğu yaşlı veya genç göknar meşcerelerinde daha yüksek belirlenmiştir. Alt toprak özellikleri değerlendirildiğinde ise, farklı arazi kullanımları arasında belirgin bir farklılık tespit edilmemekle beraber, tarım alanları topraklarının en yüksek kil, toz ve pH değerlerine, mera alanları topraklarının ise en düşük kil, toz, P ve K miktarına sahip olduğu görülmüştür. Yaşlı ve genç göknar meşcerelerinin üst ve alt toprakları en yüksek organik karbon ve azot miktarı ve depolama kapasitesine sahip olurken, bu değerleri mera alanları ve tarım alanları izlemiştir. Bununla beraber, tüm toprak derinliği değerlendirildiğinde (0- 20 cm),  ortalama toprak organik karbon depolama kapasitesi en yüksek mera alanlarında (50.2 Mg C ha-1), bunu sırasıyla genç göknar meşcereleri (48.6 Mg C ha-1), yaşlı göknar meşcereleri (47.4 Mg C ha-1) ve tarım alanları (32.3 Mg C ha-1) takip etmiştir. Ortalama toplam azot depolaması ise en yüksek genç göknar meşcerelerinde (5.61 Mg N ha-1) belirlenirken, bunu sırasıyla mera alanları (5.09 Mg N ha-1), yaşlı göknar meşcereleri (4.45 Mg N ha-1) ve tarım alanları (3.33 Mg N ha-1)’na ait topraklar izlemiştir. 

Kaynakça

  • Allen S.E. 1989. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.
  • Arevalo C. B. M., Bhatti J. S., Chang S. X., Sidders D. 2009. Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. Forest Ecology and Management 257, 1776-1785.
  • Batlle-Aguilar J., Brovelli A., Porporato A., Barry D. A. 2011. Modelling soil carbon and nitrogen cycles during land use change. A review. Agronomy for Sustainable Development 31(2): 251–274
  • Baumert K., Pershing J., Herzog T., Markoff M. 2004. Climate Data: Insights and Observations. Pew Center on Global Climate Change. World Resources Institute, Arlington, VA.
  • Bouyoucos G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464-465.
  • Bruce J.P., Frome M., Haites E., Janzen H., Lal R., Paustian K. 1999. Carbon sequestration in soils, J. Soil Water Conservation. 54, 382–389.
  • Curtis P.-S., Hanson P.-J., Bolstad P., Barford C., Randolph J.-C., Schmid H.-P., Wilson K.-B. 2002. Biometric and eddy covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agriculture and Forestry Meteorology 113, 3–19.
  • Davidson E. A., Ackerman, I. L. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193.
  • de Moraes J.F.L., Volkoff B., Cerri C.C., Bernoux M. 1996. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil, Geoderma 70, 63–81.
  • Dumanski J. 2004. Carbon sequestration, soil conservation, and the Kyoto protocol: summary of implications. Climatic Change 65, 255–261.
  • Evrendilek F, Celik I, Kilic S. 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments. 59, 743–752
  • Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8, 345–360.
  • Gülçür F. 1974. Soil physical and chemical analysis methods. Istanbul University Forestry Faculty Publication no. 221, Kutulmus Press, Istanbul, Turkey, pp. 225.
  • Hobbie S.E. 2008. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89 (9), 2633-2644.
  • Houghton R.A. 1990. The future role of tropical forest in affecting the carbon dioxide concentration of the atmosphere, Ambio 19, 204.
  • Houghton R.A. 1999. The annual net flux of carbon to the atmosphere from changes in land-use 1850–1990. Tellus 51B, 298–313.
  • IPCC 1996. Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Chapter 5, Land-use Change and Forestry, p 76.
  • Islam K.R., Kamaluddin M., Bhuiyan M.K., Badruddin A. 1999. Comparative performance of exotic and indigenous forest species for tropical semi evergreen degraded forest land reforestation in Chittagong, Bangladesh, Land Degradation and Development 10, 241–249.
  • Jiang C., Yu G., Fang H., Cao G., Li Y. 2010. Shortterm effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environment 44 (24), 2920-2926.
  • Kimble J. M., Lal R., Follett R. R. 2002. Agricultural Practices and policy options for carbon sequestration: what we know and where we need to go. In Agricultural practices and policies for carbon sequestration in soil eds by Kimbel, J.M., R. Lal, and R.F. Follett. New York, Lewis Publishers, p 512.
  • Lal R. 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation and Development 14, 309–322.
  • Lecointe S., Claude NYS, Christian W, Françoise F, Sandrine H, Paula R, Stéphane F. 2006. Estimation of carbon stocks in a beech forest (Fougères Forest - W. France): extrapolation from the plots to the whole forest. Annals of Forest Science 63, 139-148.
  • Lee J., Hopmans J.W., Rolston D.E., Baer S.G., Six J. 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture Ecosystems and Environment 134, 251-256.
  • Motavalli P.P., Discekici H., Kuhn J. 2000. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer, Agriculture Ecosystem and Environment. 79, 17–27.
  • Murty D., Kirschbaum M.U.F., McMurtrie R.E., McGilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8, 105–123.
  • Osher L.J., Matson P.A., Amundson R. 2003. Effect of land use change on soil carbon in Hawaii. Biogeochemistry 65, 213-232.
  • Prévost M. 2004. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Journal of Soil Science Society of America. 68, 943–949
  • Reicosky D.C., Dugas W.A., Torbert H.A. 1997. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil and Tillage Research. 41, 105–118.
  • Reiners W.A., Bouwman A.F., Parsons W.F.J., Keller M. 1994. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecological Applications. 4, 363–377.
  • Sariyildiz T., Savacı G., Kravkaz İ.S. 2016. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwest of Turkey. iForest - Biogeosciences and Forestry. 9, 165-170.
  • Singh B.R., Lal R. 2005. The potential of soil carbon sequestration through improved management practices in Norway. Environment, Development and Sustainability. 7, 161–184.
  • Sonja A.H., Brandt C.C., Sardine P.M. 2005. Using soil physical and chemical properties to estimate bulk density. Journal of Soil Science Society of America. 69, 51–56.
  • Veldkamp E. 1994. Organic carbon turnover in three tropical soils under pasture after deforestation. Journal of Soil Science Society of America. 58, 175–180.
  • Vitousek P.M., Sanford R.L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics. 17, 137.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Temel SARIYILDIZ


Gamze SAVACI


Züleyha MARAL

Yayımlanma Tarihi 5 Mayıs 2017
Yayınlandığı Sayı Yıl 2017, Cilt 17, Sayı 1

Kaynak Göster

Bibtex @araştırma makalesi { kastorman296912, journal = {Kastamonu University Journal of Forestry Faculty}, issn = {1303-2399}, eissn = {1309-4181}, address = {}, publisher = {Kastamonu Üniversitesi}, year = {2017}, pages = {132 - 142}, doi = {10.17475/kastorman.296912}, title = {Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region}, key = {cite}, author = {Sarıyıldız, Temel and Savacı, Gamze and Maral, Züleyha} }
APA Sarıyıldız, T. , Savacı, G. & Maral, Z. (2017). Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region . Kastamonu University Journal of Forestry Faculty , 17 (1) , 132-142 . DOI: 10.17475/kastorman.296912
MLA Sarıyıldız, T. , Savacı, G. , Maral, Z. "Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region" . Kastamonu University Journal of Forestry Faculty 17 (2017 ): 132-142 <https://dergipark.org.tr/tr/pub/kastorman/article/296912>
Chicago Sarıyıldız, T. , Savacı, G. , Maral, Z. "Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region". Kastamonu University Journal of Forestry Faculty 17 (2017 ): 132-142
RIS TY - JOUR T1 - Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region AU - Temel Sarıyıldız , Gamze Savacı , Züleyha Maral Y1 - 2017 PY - 2017 N1 - doi: 10.17475/kastorman.296912 DO - 10.17475/kastorman.296912 T2 - Kastamonu University Journal of Forestry Faculty JF - Journal JO - JOR SP - 132 EP - 142 VL - 17 IS - 1 SN - 1303-2399-1309-4181 M3 - doi: 10.17475/kastorman.296912 UR - https://doi.org/10.17475/kastorman.296912 Y2 - 2017 ER -
EndNote %0 Kastamonu Üniversitesi Orman Fakültesi Dergisi Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region %A Temel Sarıyıldız , Gamze Savacı , Züleyha Maral %T Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region %D 2017 %J Kastamonu University Journal of Forestry Faculty %P 1303-2399-1309-4181 %V 17 %N 1 %R doi: 10.17475/kastorman.296912 %U 10.17475/kastorman.296912
ISNAD Sarıyıldız, Temel , Savacı, Gamze , Maral, Züleyha . "Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region". Kastamonu University Journal of Forestry Faculty 17 / 1 (Mayıs 2017): 132-142 . https://doi.org/10.17475/kastorman.296912
AMA Sarıyıldız T. , Savacı G. , Maral Z. Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region. Kastamonu University Journal of Forestry Faculty. 2017; 17(1): 132-142.
Vancouver Sarıyıldız T. , Savacı G. , Maral Z. Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region. Kastamonu University Journal of Forestry Faculty. 2017; 17(1): 132-142.
IEEE T. Sarıyıldız , G. Savacı ve Z. Maral , "Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region", Kastamonu University Journal of Forestry Faculty, c. 17, sayı. 1, ss. 132-142, May. 2017, doi:10.17475/kastorman.296912

14178  14179       14165           14166           14167            14168