Research Article
BibTex RIS Cite

On Statistical Star-Compactness Restricted up to Order $\alpha$

Year 2025, Volume: 13 Issue: 2, 175 - 179, 31.10.2025

Abstract

Expanding the concept of star compactness for a countable case, we confine the star statistical compactness up to order $\alpha$, and the value of $\alpha$ is between 0 and 1. We compare this idea with other topological aspects pertaining to star statistical compactness of order $\alpha$. This work illustrates the properties of this topological attribute and it's subspaces under various conditions, particularly under open continuous surjection. It is obtained that star statistical compactness of order $\alpha$ can be characterized by countable family of closed sets with some added set theoretic attributes.

References

  • [1] P. Bal and S. Bhowmik, Star-Selection Principle: Another New Direction, Journ. Journal of the Indian Math. Soc. Vol:84, No.1-2 (2017), 01-06.
  • [2] P. Bal and S. Bhowmik, On R-Star-Lindel¨of Spaces, Journ. Palestine Journal of Mathematics. Vol:6, No.2 (2017), 480-486.
  • [3] P. Bal and S. Bhowmik, Some New Star-Selection Principles in topology, Journ. Filomat. Vol:31, No.13(2017), 4041-4050.
  • [4] P. Bal, S. Bhowmik and D. Gauld, On Selectively Star-Lindel¨of Properties, Journ. Journal of the Indian Math. Soc. Vol:85, No.3-4 (2018), 291-304.
  • [5] P. Bal and L. D. R. Koˇcinac, On Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:281, (2020), 107184 .
  • [6] P. Bal, D. Rakshit and S. Sarkar, On Star Statistical Compactness (communicated).
  • [7] S. Bhunia, P. Das and S. K. Pal, Restricting statistical convergence, Journ. Acta Math. Hungar. Vol:134, No.1-2 (2012), 153-161.
  • [8] M. Bonanzinga, D. Giacopello and F. Maesano, Some properties defined by Relative versions of Star-covering Properties, Journ. Topology Appl. Vol:306, (2022), 107-923.
  • [9] M. Candan, A new aspect for Some Sequence spaces Derived using the Domain of the Matrix, Journ. Fundam. J. Math. Appl. Vol:5, no. 1 (2022), 51-62.
  • [10] T. Datta and P. Bal, Statistical Compact Spaces of order a (communicated).
  • [11] E. K. van. Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Journ. Topology Appl. Vol:39, no. 1 (1991), 71-103.
  • [12] Engelking, R., General Topology, Sigma Series in Pure Mathematics, Heldermann Verlag Publishers, 1989.
  • [13] S. Erdem and S. Demiriz, A Study on Strongly Almost Convergent and Strongly Almost Null Binomial Double Sequence Spaces, Journ. Fundam. J. Math. Appl. Vol:4, no. 4 (2021), 271-279.
  • [14] H. Fast, Sur la convergence Statistique, Journ. Colloq. Math. Vol:2, no. 3-4 (1951), 241-244.
  • [15] J. A. Fridy, On Statistical convergence, Journ. Analysis. Vol:5, (1985), 301-313.
  • [16] F. Gokce, Compact and Matrix Operators on the space, Journ. Fundam. J. Math. Appl. Vol:4, no. 2 (2021), 124-133.
  • [17] E. Gulle and U. Ulusu, Deferred Invariants Statistical and Strong p-Deferred Invariant Equivalence of order a, Journ. Fundam. J. Math. Appl. Vol:6, no. 4 (2023), 211217.
  • [18] O. Kisi, On Iq -convergence in Neutrosophic Normed Spaces, Journ. Fundam. J. Math. Appl. Vol:4, no. 2 (2021), 67-76.
  • [19] O. Kisi and E. Guler, I-Cesaro summability of a sequence of order a of Random Variables in Probability, Journ. Fundam. J. Math. Appl. Vol:1, no.2 (2018), 157-161.
  • [20] L. D. R. Kocinac, Star Selection Principles : A Survey, Journ. Khayyam J. Math. Vol:1, no. 1(2015), 82-106. [21] L. D. R. Koˇcinac, and S. Singh, On the Set Version of Selectively Star-ccc Spaces, Journ. Journal of Mathematics. Vol:2020, no. 2(2020), 9274503.
  • [22] G. D. Maio, and L. D. R. Koˇcinac, Statistical convergence in topology, Journ. Topology Appl. Vol:156, no. 1 (2008), 28-45.
  • [23] M. Nur and H. Gunawan, Three Equivalent n-Norms on the space of p-Summable Sequences, Journ. Fundam. J. Math. Appl. Vol:2, no. 2 (2019), 123-129.
  • [24] M. Sakai, Star versions of the Menger Property, Journ. Topology Appl. Vol:176, (2014), 22-34.
  • [25] S. Sarkar, P. Bal, and D. Rakshit, On Statistical Compactness, Journ. Iranian Journal of Mathematical Sciences & Informatics (accepted).
  • [26] I. J. Schoenberg, Integrability of Certain Functions and Related Summability Methods, Journ. Amer. Math. Monthly. Vol:66, no. 5 (1959), 361-375.
  • [27] Y. K. Song, and W. F. Xuan, A Note on Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:263, (2019), 343-349.
  • [28] Y. K. Song, and W. F. Xuan, More on Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:268, (2019), 106905.
  • [29] Y. K. Song, and W. F. Xuan, A Study of Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:273, (2020), 107103 .

Year 2025, Volume: 13 Issue: 2, 175 - 179, 31.10.2025

Abstract

References

  • [1] P. Bal and S. Bhowmik, Star-Selection Principle: Another New Direction, Journ. Journal of the Indian Math. Soc. Vol:84, No.1-2 (2017), 01-06.
  • [2] P. Bal and S. Bhowmik, On R-Star-Lindel¨of Spaces, Journ. Palestine Journal of Mathematics. Vol:6, No.2 (2017), 480-486.
  • [3] P. Bal and S. Bhowmik, Some New Star-Selection Principles in topology, Journ. Filomat. Vol:31, No.13(2017), 4041-4050.
  • [4] P. Bal, S. Bhowmik and D. Gauld, On Selectively Star-Lindel¨of Properties, Journ. Journal of the Indian Math. Soc. Vol:85, No.3-4 (2018), 291-304.
  • [5] P. Bal and L. D. R. Koˇcinac, On Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:281, (2020), 107184 .
  • [6] P. Bal, D. Rakshit and S. Sarkar, On Star Statistical Compactness (communicated).
  • [7] S. Bhunia, P. Das and S. K. Pal, Restricting statistical convergence, Journ. Acta Math. Hungar. Vol:134, No.1-2 (2012), 153-161.
  • [8] M. Bonanzinga, D. Giacopello and F. Maesano, Some properties defined by Relative versions of Star-covering Properties, Journ. Topology Appl. Vol:306, (2022), 107-923.
  • [9] M. Candan, A new aspect for Some Sequence spaces Derived using the Domain of the Matrix, Journ. Fundam. J. Math. Appl. Vol:5, no. 1 (2022), 51-62.
  • [10] T. Datta and P. Bal, Statistical Compact Spaces of order a (communicated).
  • [11] E. K. van. Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Journ. Topology Appl. Vol:39, no. 1 (1991), 71-103.
  • [12] Engelking, R., General Topology, Sigma Series in Pure Mathematics, Heldermann Verlag Publishers, 1989.
  • [13] S. Erdem and S. Demiriz, A Study on Strongly Almost Convergent and Strongly Almost Null Binomial Double Sequence Spaces, Journ. Fundam. J. Math. Appl. Vol:4, no. 4 (2021), 271-279.
  • [14] H. Fast, Sur la convergence Statistique, Journ. Colloq. Math. Vol:2, no. 3-4 (1951), 241-244.
  • [15] J. A. Fridy, On Statistical convergence, Journ. Analysis. Vol:5, (1985), 301-313.
  • [16] F. Gokce, Compact and Matrix Operators on the space, Journ. Fundam. J. Math. Appl. Vol:4, no. 2 (2021), 124-133.
  • [17] E. Gulle and U. Ulusu, Deferred Invariants Statistical and Strong p-Deferred Invariant Equivalence of order a, Journ. Fundam. J. Math. Appl. Vol:6, no. 4 (2023), 211217.
  • [18] O. Kisi, On Iq -convergence in Neutrosophic Normed Spaces, Journ. Fundam. J. Math. Appl. Vol:4, no. 2 (2021), 67-76.
  • [19] O. Kisi and E. Guler, I-Cesaro summability of a sequence of order a of Random Variables in Probability, Journ. Fundam. J. Math. Appl. Vol:1, no.2 (2018), 157-161.
  • [20] L. D. R. Kocinac, Star Selection Principles : A Survey, Journ. Khayyam J. Math. Vol:1, no. 1(2015), 82-106. [21] L. D. R. Koˇcinac, and S. Singh, On the Set Version of Selectively Star-ccc Spaces, Journ. Journal of Mathematics. Vol:2020, no. 2(2020), 9274503.
  • [22] G. D. Maio, and L. D. R. Koˇcinac, Statistical convergence in topology, Journ. Topology Appl. Vol:156, no. 1 (2008), 28-45.
  • [23] M. Nur and H. Gunawan, Three Equivalent n-Norms on the space of p-Summable Sequences, Journ. Fundam. J. Math. Appl. Vol:2, no. 2 (2019), 123-129.
  • [24] M. Sakai, Star versions of the Menger Property, Journ. Topology Appl. Vol:176, (2014), 22-34.
  • [25] S. Sarkar, P. Bal, and D. Rakshit, On Statistical Compactness, Journ. Iranian Journal of Mathematical Sciences & Informatics (accepted).
  • [26] I. J. Schoenberg, Integrability of Certain Functions and Related Summability Methods, Journ. Amer. Math. Monthly. Vol:66, no. 5 (1959), 361-375.
  • [27] Y. K. Song, and W. F. Xuan, A Note on Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:263, (2019), 343-349.
  • [28] Y. K. Song, and W. F. Xuan, More on Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:268, (2019), 106905.
  • [29] Y. K. Song, and W. F. Xuan, A Study of Selectively Star-ccc Spaces, Journ. Topology Appl. Vol:273, (2020), 107103 .
There are 28 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Prasenjit Bal

Tanmayee Datta

Submission Date September 19, 2024
Acceptance Date November 21, 2024
Publication Date October 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Bal, P., & Datta, T. (2025). On Statistical Star-Compactness Restricted up to Order $\alpha$. Konuralp Journal of Mathematics, 13(2), 175-179.
AMA Bal P, Datta T. On Statistical Star-Compactness Restricted up to Order $\alpha$. Konuralp J. Math. October 2025;13(2):175-179.
Chicago Bal, Prasenjit, and Tanmayee Datta. “On Statistical Star-Compactness Restricted up to Order $\alpha$”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 175-79.
EndNote Bal P, Datta T (October 1, 2025) On Statistical Star-Compactness Restricted up to Order $\alpha$. Konuralp Journal of Mathematics 13 2 175–179.
IEEE P. Bal and T. Datta, “On Statistical Star-Compactness Restricted up to Order $\alpha$”, Konuralp J. Math., vol. 13, no. 2, pp. 175–179, 2025.
ISNAD Bal, Prasenjit - Datta, Tanmayee. “On Statistical Star-Compactness Restricted up to Order $\alpha$”. Konuralp Journal of Mathematics 13/2 (October2025), 175-179.
JAMA Bal P, Datta T. On Statistical Star-Compactness Restricted up to Order $\alpha$. Konuralp J. Math. 2025;13:175–179.
MLA Bal, Prasenjit and Tanmayee Datta. “On Statistical Star-Compactness Restricted up to Order $\alpha$”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 175-9.
Vancouver Bal P, Datta T. On Statistical Star-Compactness Restricted up to Order $\alpha$. Konuralp J. Math. 2025;13(2):175-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.