Harmonically $(s,P)$-Functions and Related Inequalities
Year 2025,
Volume: 13 Issue: 2, 250 - 258, 31.10.2025
Mustafa Aydın
,
Erhan Set
,
İmdat İşcan
Abstract
In this paper, we introduce and investigate the concept of harmonically $(s,P)$-functions and establish Hermite-Hadamard type inequalities for this class of functions. In addition, we derive new Hermite-Hadamard type inequalities for functions whose first derivatives in absolute value are harmonically $(s,P)$-functions, by employing Hölder's inequality and the power-mean inequality. Furthermore, we present some new inequalities related to special means of real numbers.
References
-
[1] A. Barani and S. Barani, Hermite-Hadamard type inequalities for functions when a power of the absolute value of the first derivative is P-convex,
Bulletin of the Australian Mathematical Society, 86 (1) (2012), 129-134.
-
[2] K. Bekar, Hermite-Hadamard Type Inequalities for Trigonometrically P-functions, Comptes rendus de l’Acad´emie bulgare des Sciences 72 (11) (2019),
1449-1457.
-
[3] M. Bombardelli and S. Varoˇsanec, Properties of h-convex functions related to the Hermite-Hadamard-Fej´er inequalities, Computers & Mathematics
with Applications, 58 (2009) 1869–1877.
-
[4] W. W. Breckner, Stetigkeitsaussagen f¨ur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen R¨aumen. Publications de l’Institut
Math´ematique(Beograd)(NS), 23(37) (1978) , 13-20.
-
[5] SS. Dragomir and RP. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal
formula, Applied Mathematics Letters. 11 (1998), 91-95.
-
[6] S.S. Dragomir, S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstration Math., 32(4), (1999), 687–696.
-
[7] SS. Dragomir, J. Peˇcari´c and LE. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21 (3)(2001), pp. 335-341.
-
[8] J. Hadamard, E´tude sur les proprie´te´s des fonctions entie`res en particulier d’une fonction conside´re´e par Riemann, Journal de Mathe´matiques Pures et
Appliqu´ees 58 (1893), 171-215.
-
[9] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math, 48 (1994), 100-111.
-
[10] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and statistics, 43(6) (2014), 935-942.
-
[11] İ. İşcan, Ostrowski type inequalities for harmonically s-convex functions, Konuralp journal of Mathematics, 3.1 (2015), 63-74.
-
[12] İ. İşcan, S. Numan and K. Bekar, Hermite-Hadamard and Simpson Type Inequalities for Differentiable Harmonically P-functions, British Journal of
Mathematics & Computer Science 4(14) (2014), 1908-1920.
-
[13] İ. İşcan and V. Olucak, Multiplicatively Harmonically P-Functions and Some Related Inequalities, Sigma J Eng & Nat Sci 37 (2), 2019, 521-528.
-
[14] İ. İşcan, E. Set, M. Emin O¨ zdemir, Some new general integral inequalities for P-functions, Malaya J. Mat. 2(4)(2014) 510–516.
-
[15] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier,
Amsterdam (2006).
-
[16] M. A.Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci.
Bull. Ser. A Appl. Math. Phys, 77(1) (2015), 5-16.
-
[17] S. Numan and İ. İşcan, On (s;P)-functions and related inequalities, Sigma Journal of Engineering and Natural Sciences, 40(3) (2022), 585-592.
-
[18] S. Varoˇsanec, On h-convexity, J. Math. Anal. Appl. 326 (2007) 303-311
Year 2025,
Volume: 13 Issue: 2, 250 - 258, 31.10.2025
Mustafa Aydın
,
Erhan Set
,
İmdat İşcan
References
-
[1] A. Barani and S. Barani, Hermite-Hadamard type inequalities for functions when a power of the absolute value of the first derivative is P-convex,
Bulletin of the Australian Mathematical Society, 86 (1) (2012), 129-134.
-
[2] K. Bekar, Hermite-Hadamard Type Inequalities for Trigonometrically P-functions, Comptes rendus de l’Acad´emie bulgare des Sciences 72 (11) (2019),
1449-1457.
-
[3] M. Bombardelli and S. Varoˇsanec, Properties of h-convex functions related to the Hermite-Hadamard-Fej´er inequalities, Computers & Mathematics
with Applications, 58 (2009) 1869–1877.
-
[4] W. W. Breckner, Stetigkeitsaussagen f¨ur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen R¨aumen. Publications de l’Institut
Math´ematique(Beograd)(NS), 23(37) (1978) , 13-20.
-
[5] SS. Dragomir and RP. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal
formula, Applied Mathematics Letters. 11 (1998), 91-95.
-
[6] S.S. Dragomir, S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstration Math., 32(4), (1999), 687–696.
-
[7] SS. Dragomir, J. Peˇcari´c and LE. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21 (3)(2001), pp. 335-341.
-
[8] J. Hadamard, E´tude sur les proprie´te´s des fonctions entie`res en particulier d’une fonction conside´re´e par Riemann, Journal de Mathe´matiques Pures et
Appliqu´ees 58 (1893), 171-215.
-
[9] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math, 48 (1994), 100-111.
-
[10] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and statistics, 43(6) (2014), 935-942.
-
[11] İ. İşcan, Ostrowski type inequalities for harmonically s-convex functions, Konuralp journal of Mathematics, 3.1 (2015), 63-74.
-
[12] İ. İşcan, S. Numan and K. Bekar, Hermite-Hadamard and Simpson Type Inequalities for Differentiable Harmonically P-functions, British Journal of
Mathematics & Computer Science 4(14) (2014), 1908-1920.
-
[13] İ. İşcan and V. Olucak, Multiplicatively Harmonically P-Functions and Some Related Inequalities, Sigma J Eng & Nat Sci 37 (2), 2019, 521-528.
-
[14] İ. İşcan, E. Set, M. Emin O¨ zdemir, Some new general integral inequalities for P-functions, Malaya J. Mat. 2(4)(2014) 510–516.
-
[15] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier,
Amsterdam (2006).
-
[16] M. A.Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci.
Bull. Ser. A Appl. Math. Phys, 77(1) (2015), 5-16.
-
[17] S. Numan and İ. İşcan, On (s;P)-functions and related inequalities, Sigma Journal of Engineering and Natural Sciences, 40(3) (2022), 585-592.
-
[18] S. Varoˇsanec, On h-convexity, J. Math. Anal. Appl. 326 (2007) 303-311