Research Article
BibTex RIS Cite

Harmonically $(s,P)$-Functions and Related Inequalities

Year 2025, Volume: 13 Issue: 2, 250 - 258, 31.10.2025

Abstract

In this paper, we introduce and investigate the concept of harmonically $(s,P)$-functions and establish Hermite-Hadamard type inequalities for this class of functions. In addition, we derive new Hermite-Hadamard type inequalities for functions whose first derivatives in absolute value are harmonically $(s,P)$-functions, by employing Hölder's inequality and the power-mean inequality. Furthermore, we present some new inequalities related to special means of real numbers.

References

  • [1] A. Barani and S. Barani, Hermite-Hadamard type inequalities for functions when a power of the absolute value of the first derivative is P-convex, Bulletin of the Australian Mathematical Society, 86 (1) (2012), 129-134.
  • [2] K. Bekar, Hermite-Hadamard Type Inequalities for Trigonometrically P-functions, Comptes rendus de l’Acad´emie bulgare des Sciences 72 (11) (2019), 1449-1457.
  • [3] M. Bombardelli and S. Varoˇsanec, Properties of h-convex functions related to the Hermite-Hadamard-Fej´er inequalities, Computers & Mathematics with Applications, 58 (2009) 1869–1877.
  • [4] W. W. Breckner, Stetigkeitsaussagen f¨ur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen R¨aumen. Publications de l’Institut Math´ematique(Beograd)(NS), 23(37) (1978) , 13-20.
  • [5] SS. Dragomir and RP. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Applied Mathematics Letters. 11 (1998), 91-95.
  • [6] S.S. Dragomir, S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstration Math., 32(4), (1999), 687–696.
  • [7] SS. Dragomir, J. Peˇcari´c and LE. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21 (3)(2001), pp. 335-341.
  • [8] J. Hadamard, E´tude sur les proprie´te´s des fonctions entie`res en particulier d’une fonction conside´re´e par Riemann, Journal de Mathe´matiques Pures et Appliqu´ees 58 (1893), 171-215.
  • [9] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math, 48 (1994), 100-111.
  • [10] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and statistics, 43(6) (2014), 935-942.
  • [11] İ. İşcan, Ostrowski type inequalities for harmonically s-convex functions, Konuralp journal of Mathematics, 3.1 (2015), 63-74.
  • [12] İ. İşcan, S. Numan and K. Bekar, Hermite-Hadamard and Simpson Type Inequalities for Differentiable Harmonically P-functions, British Journal of Mathematics & Computer Science 4(14) (2014), 1908-1920.
  • [13] İ. İşcan and V. Olucak, Multiplicatively Harmonically P-Functions and Some Related Inequalities, Sigma J Eng & Nat Sci 37 (2), 2019, 521-528.
  • [14] İ. İşcan, E. Set, M. Emin O¨ zdemir, Some new general integral inequalities for P-functions, Malaya J. Mat. 2(4)(2014) 510–516.
  • [15] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam (2006).
  • [16] M. A.Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys, 77(1) (2015), 5-16.
  • [17] S. Numan and İ. İşcan, On (s;P)-functions and related inequalities, Sigma Journal of Engineering and Natural Sciences, 40(3) (2022), 585-592.
  • [18] S. Varoˇsanec, On h-convexity, J. Math. Anal. Appl. 326 (2007) 303-311

Year 2025, Volume: 13 Issue: 2, 250 - 258, 31.10.2025

Abstract

References

  • [1] A. Barani and S. Barani, Hermite-Hadamard type inequalities for functions when a power of the absolute value of the first derivative is P-convex, Bulletin of the Australian Mathematical Society, 86 (1) (2012), 129-134.
  • [2] K. Bekar, Hermite-Hadamard Type Inequalities for Trigonometrically P-functions, Comptes rendus de l’Acad´emie bulgare des Sciences 72 (11) (2019), 1449-1457.
  • [3] M. Bombardelli and S. Varoˇsanec, Properties of h-convex functions related to the Hermite-Hadamard-Fej´er inequalities, Computers & Mathematics with Applications, 58 (2009) 1869–1877.
  • [4] W. W. Breckner, Stetigkeitsaussagen f¨ur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen R¨aumen. Publications de l’Institut Math´ematique(Beograd)(NS), 23(37) (1978) , 13-20.
  • [5] SS. Dragomir and RP. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Applied Mathematics Letters. 11 (1998), 91-95.
  • [6] S.S. Dragomir, S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstration Math., 32(4), (1999), 687–696.
  • [7] SS. Dragomir, J. Peˇcari´c and LE. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21 (3)(2001), pp. 335-341.
  • [8] J. Hadamard, E´tude sur les proprie´te´s des fonctions entie`res en particulier d’une fonction conside´re´e par Riemann, Journal de Mathe´matiques Pures et Appliqu´ees 58 (1893), 171-215.
  • [9] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math, 48 (1994), 100-111.
  • [10] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and statistics, 43(6) (2014), 935-942.
  • [11] İ. İşcan, Ostrowski type inequalities for harmonically s-convex functions, Konuralp journal of Mathematics, 3.1 (2015), 63-74.
  • [12] İ. İşcan, S. Numan and K. Bekar, Hermite-Hadamard and Simpson Type Inequalities for Differentiable Harmonically P-functions, British Journal of Mathematics & Computer Science 4(14) (2014), 1908-1920.
  • [13] İ. İşcan and V. Olucak, Multiplicatively Harmonically P-Functions and Some Related Inequalities, Sigma J Eng & Nat Sci 37 (2), 2019, 521-528.
  • [14] İ. İşcan, E. Set, M. Emin O¨ zdemir, Some new general integral inequalities for P-functions, Malaya J. Mat. 2(4)(2014) 510–516.
  • [15] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam (2006).
  • [16] M. A.Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys, 77(1) (2015), 5-16.
  • [17] S. Numan and İ. İşcan, On (s;P)-functions and related inequalities, Sigma Journal of Engineering and Natural Sciences, 40(3) (2022), 585-592.
  • [18] S. Varoˇsanec, On h-convexity, J. Math. Anal. Appl. 326 (2007) 303-311
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Mustafa Aydın

Erhan Set

İmdat İşcan

Submission Date September 11, 2025
Acceptance Date October 29, 2025
Publication Date October 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Aydın, M., Set, E., & İşcan, İ. (2025). Harmonically $(s,P)$-Functions and Related Inequalities. Konuralp Journal of Mathematics, 13(2), 250-258.
AMA Aydın M, Set E, İşcan İ. Harmonically $(s,P)$-Functions and Related Inequalities. Konuralp J. Math. October 2025;13(2):250-258.
Chicago Aydın, Mustafa, Erhan Set, and İmdat İşcan. “Harmonically $(s,P)$-Functions and Related Inequalities”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 250-58.
EndNote Aydın M, Set E, İşcan İ (October 1, 2025) Harmonically $(s,P)$-Functions and Related Inequalities. Konuralp Journal of Mathematics 13 2 250–258.
IEEE M. Aydın, E. Set, and İ. İşcan, “Harmonically $(s,P)$-Functions and Related Inequalities”, Konuralp J. Math., vol. 13, no. 2, pp. 250–258, 2025.
ISNAD Aydın, Mustafa et al. “Harmonically $(s,P)$-Functions and Related Inequalities”. Konuralp Journal of Mathematics 13/2 (October2025), 250-258.
JAMA Aydın M, Set E, İşcan İ. Harmonically $(s,P)$-Functions and Related Inequalities. Konuralp J. Math. 2025;13:250–258.
MLA Aydın, Mustafa et al. “Harmonically $(s,P)$-Functions and Related Inequalities”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 250-8.
Vancouver Aydın M, Set E, İşcan İ. Harmonically $(s,P)$-Functions and Related Inequalities. Konuralp J. Math. 2025;13(2):250-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.