Research Article
BibTex RIS Cite

Year 2021, Volume: 9 Issue: 1, 49 - 59, 28.04.2021
https://izlik.org/JA58LZ59EA

Abstract

References

  • [1] A. Akkurt, M. E. Yıldırım, and H. Yıldırım, A new Generalized fractional derivative and integral, Konuralp Journal of Mathematics, Volume 5 No. 2 pp. 248–259 (2017).
  • [2] M. Z. Sarıkaya, A. Akkurt, H. Budak, M. E. Yıldırım, and H. Yıldırım, Hermite-Hadamard’s inequalities for conformable fractional integrals. An Interna-tional Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(1), 49-59 (2019). doi:http://dx.doi.org/10.11121/ijocta.01.2019.00559.
  • [3] R. Almeida, M. Guzowska, and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, Open Mathematics, 14(1), 1122-1124 (2016). doi: https://doi.org/10.1515/math-2016-0104
  • [4] D. R. Anderson, Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives. In: Pardalos P., Rassias T. (eds) Contributions in Mathematics and Engineering. Springer, 2016, Cham
  • [5] U. N. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535v1 [math.CA] 2014
  • [6] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Eqnarrays, in: Math. Studies., North-Holland, New York, 2006.
  • [7] S. G. Samko, A. A. Kilbas amd O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
  • [8] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57-66.
  • [9] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new de nition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70.
  • [10] F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Advances in Difference Eqnarrays, 2017, 2017:247, https://doi.org/10.1186/s13662-017-1306-z
  • [11] D. P. Mourya, Fractional integrals of the functions of two variables. Proc. Indian Acad. Sci. 72, 173–184 (1970). https://doi.org/10.1007/BF03049707.
  • [12] M. Z. Sarikaya , On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms and Special Functions, 25(2), 2014, pp:134-147.
  • [13] M.Z. Sarikaya, H. Budak and F. Usta, On generalized the conformable fractional calculus, TWMS J. App. Eng. Math. V.9, N.4, 2019, pp. 792-799.
  • [14] F. Jarad, E. Ugurlu˘ and T. Abdeljawad, On a new class of fractional operators. Adv Differ Equ 2017, 247 (2017). https://doi.org/10.1186/s13662-017-1306-z.

Conformable Derivatives and Integrals for the Functions of Two Variables

Year 2021, Volume: 9 Issue: 1, 49 - 59, 28.04.2021
https://izlik.org/JA58LZ59EA

Abstract

In this paper, we introduce conformable derivatives and integrals for the functions of two variables. This class of new fractional operators includes many definitions in the literature, such as Riemann-Liouville Fractional Derivatives and Integrals [6,7], Conformable Calculus [8,9], etc. In addition, some basic definitions and theorems have been obtained for these operators.

References

  • [1] A. Akkurt, M. E. Yıldırım, and H. Yıldırım, A new Generalized fractional derivative and integral, Konuralp Journal of Mathematics, Volume 5 No. 2 pp. 248–259 (2017).
  • [2] M. Z. Sarıkaya, A. Akkurt, H. Budak, M. E. Yıldırım, and H. Yıldırım, Hermite-Hadamard’s inequalities for conformable fractional integrals. An Interna-tional Journal of Optimization and Control: Theories & Applications (IJOCTA), 9(1), 49-59 (2019). doi:http://dx.doi.org/10.11121/ijocta.01.2019.00559.
  • [3] R. Almeida, M. Guzowska, and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, Open Mathematics, 14(1), 1122-1124 (2016). doi: https://doi.org/10.1515/math-2016-0104
  • [4] D. R. Anderson, Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives. In: Pardalos P., Rassias T. (eds) Contributions in Mathematics and Engineering. Springer, 2016, Cham
  • [5] U. N. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535v1 [math.CA] 2014
  • [6] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Eqnarrays, in: Math. Studies., North-Holland, New York, 2006.
  • [7] S. G. Samko, A. A. Kilbas amd O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
  • [8] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57-66.
  • [9] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new de nition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70.
  • [10] F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Advances in Difference Eqnarrays, 2017, 2017:247, https://doi.org/10.1186/s13662-017-1306-z
  • [11] D. P. Mourya, Fractional integrals of the functions of two variables. Proc. Indian Acad. Sci. 72, 173–184 (1970). https://doi.org/10.1007/BF03049707.
  • [12] M. Z. Sarikaya , On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms and Special Functions, 25(2), 2014, pp:134-147.
  • [13] M.Z. Sarikaya, H. Budak and F. Usta, On generalized the conformable fractional calculus, TWMS J. App. Eng. Math. V.9, N.4, 2019, pp. 792-799.
  • [14] F. Jarad, E. Ugurlu˘ and T. Abdeljawad, On a new class of fractional operators. Adv Differ Equ 2017, 247 (2017). https://doi.org/10.1186/s13662-017-1306-z.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Muhammet Bozkurt This is me

Abdullah Akkurt 0000-0001-5644-1276

Hüseyin Yildirim 0000-0001-8855-9260

Submission Date July 2, 2020
Acceptance Date January 11, 2021
Publication Date April 28, 2021
IZ https://izlik.org/JA58LZ59EA
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Bozkurt, M., Akkurt, A., & Yildirim, H. (2021). Conformable Derivatives and Integrals for the Functions of Two Variables. Konuralp Journal of Mathematics, 9(1), 49-59. https://izlik.org/JA58LZ59EA
AMA 1.Bozkurt M, Akkurt A, Yildirim H. Conformable Derivatives and Integrals for the Functions of Two Variables. Konuralp J. Math. 2021;9(1):49-59. https://izlik.org/JA58LZ59EA
Chicago Bozkurt, Muhammet, Abdullah Akkurt, and Hüseyin Yildirim. 2021. “Conformable Derivatives and Integrals for the Functions of Two Variables”. Konuralp Journal of Mathematics 9 (1): 49-59. https://izlik.org/JA58LZ59EA.
EndNote Bozkurt M, Akkurt A, Yildirim H (April 1, 2021) Conformable Derivatives and Integrals for the Functions of Two Variables. Konuralp Journal of Mathematics 9 1 49–59.
IEEE [1]M. Bozkurt, A. Akkurt, and H. Yildirim, “Conformable Derivatives and Integrals for the Functions of Two Variables”, Konuralp J. Math., vol. 9, no. 1, pp. 49–59, Apr. 2021, [Online]. Available: https://izlik.org/JA58LZ59EA
ISNAD Bozkurt, Muhammet - Akkurt, Abdullah - Yildirim, Hüseyin. “Conformable Derivatives and Integrals for the Functions of Two Variables”. Konuralp Journal of Mathematics 9/1 (April 1, 2021): 49-59. https://izlik.org/JA58LZ59EA.
JAMA 1.Bozkurt M, Akkurt A, Yildirim H. Conformable Derivatives and Integrals for the Functions of Two Variables. Konuralp J. Math. 2021;9:49–59.
MLA Bozkurt, Muhammet, et al. “Conformable Derivatives and Integrals for the Functions of Two Variables”. Konuralp Journal of Mathematics, vol. 9, no. 1, Apr. 2021, pp. 49-59, https://izlik.org/JA58LZ59EA.
Vancouver 1.Bozkurt M, Akkurt A, Yildirim H. Conformable Derivatives and Integrals for the Functions of Two Variables. Konuralp J. Math. [Internet]. 2021 Apr. 1;9(1):49-5. Available from: https://izlik.org/JA58LZ59EA
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.