BibTex RIS Cite

GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

Year 2013, Volume: 1 Issue: 2, 67 - 79, 01.12.2013

Abstract

In this paper, the author establish some new estimates on HermiteHadamard type and Simpson type inequalities via Riemann Liouville fractionalintegral for functions whose second derivatives in absolute values at certainpower are quasi-convex

References

  • M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.
  • M. Alomari and M. Darus, On some inequalities of Simpson-type via quasi-convex functions with applications, Tran. J. Math. Mech. 2 (2010), 15-24.
  • M. W. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. of Math., 41(4) (2010), 353-359.
  • A. Barani, S. Barani and S.S. Dragomir, Refinements of Hermite-Hadamard type inequality for functions whose second derivative absolute values are quasi convex, RGMIA Res. Rep. Col., 14 (2011).
  • D.A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex func- tions, Annals of University of Craiova Math. Comp. Sci. Ser., 34 (2007), 82-87.
  • I. Iscan, Generalization of different type integral inequalities for s-convex functions via frac- tional integrals, Applicable Analysis, accepted for publication, arXiv:1304.3897. I. Iscan, Hermite-Hadamard type inequalities for functions whose derivatives are(α, m)−convex, Int. J. of Eng. and Appl. Sci., 2(3) (2013), 53–62.
  • I. Iscan, On generalization of some integral inequalities for quasi-convex functions and their applications, Int. J. of Eng. and Appl. Sci., 3(1) (2013), 37-42. M.Z. Sarikaya, integration, doi:1155/2012/428983. Analysis, 2012 (2012), Article ID 428983, 10 pages,
  • M. Z. Sarikaya, A. Saglam, H. Yildirim, New inequalities of Hermite-Hadamard type for func- tions whose second derivatives absolute values are convex and quasi-convex, arXiv:1005.0451 (2010).
  • M.Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite–Hadamard’s inequalities for frac- tional integrals and related fractional inequalities, Math. Comput. Model. (2012), Online, doi:1016/j.mcm.2011.12.048.
  • M.Z. Sarikaya and H. Yaldiz, On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp J. of Math., 1(1) (2013) 48-53.
  • E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl., 63(7) (2012), 1147-1154.
  • Giresun University, Science and Art Faculty, Department of Mathematics, Giresun- TURKEY E-mail address: imdat.iscan@giresun.edu.tr
Year 2013, Volume: 1 Issue: 2, 67 - 79, 01.12.2013

Abstract

References

  • M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.
  • M. Alomari and M. Darus, On some inequalities of Simpson-type via quasi-convex functions with applications, Tran. J. Math. Mech. 2 (2010), 15-24.
  • M. W. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. of Math., 41(4) (2010), 353-359.
  • A. Barani, S. Barani and S.S. Dragomir, Refinements of Hermite-Hadamard type inequality for functions whose second derivative absolute values are quasi convex, RGMIA Res. Rep. Col., 14 (2011).
  • D.A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex func- tions, Annals of University of Craiova Math. Comp. Sci. Ser., 34 (2007), 82-87.
  • I. Iscan, Generalization of different type integral inequalities for s-convex functions via frac- tional integrals, Applicable Analysis, accepted for publication, arXiv:1304.3897. I. Iscan, Hermite-Hadamard type inequalities for functions whose derivatives are(α, m)−convex, Int. J. of Eng. and Appl. Sci., 2(3) (2013), 53–62.
  • I. Iscan, On generalization of some integral inequalities for quasi-convex functions and their applications, Int. J. of Eng. and Appl. Sci., 3(1) (2013), 37-42. M.Z. Sarikaya, integration, doi:1155/2012/428983. Analysis, 2012 (2012), Article ID 428983, 10 pages,
  • M. Z. Sarikaya, A. Saglam, H. Yildirim, New inequalities of Hermite-Hadamard type for func- tions whose second derivatives absolute values are convex and quasi-convex, arXiv:1005.0451 (2010).
  • M.Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite–Hadamard’s inequalities for frac- tional integrals and related fractional inequalities, Math. Comput. Model. (2012), Online, doi:1016/j.mcm.2011.12.048.
  • M.Z. Sarikaya and H. Yaldiz, On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp J. of Math., 1(1) (2013) 48-53.
  • E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl., 63(7) (2012), 1147-1154.
  • Giresun University, Science and Art Faculty, Department of Mathematics, Giresun- TURKEY E-mail address: imdat.iscan@giresun.edu.tr
There are 12 citations in total.

Details

Journal Section Articles
Authors

İmdat İşcan This is me

Publication Date December 1, 2013
Submission Date April 4, 2015
Published in Issue Year 2013 Volume: 1 Issue: 2

Cite

APA İşcan, İ. (2013). GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX. Konuralp Journal of Mathematics, 1(2), 67-79.
AMA İşcan İ. GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX. Konuralp J. Math. October 2013;1(2):67-79.
Chicago İşcan, İmdat. “GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX”. Konuralp Journal of Mathematics 1, no. 2 (October 2013): 67-79.
EndNote İşcan İ (October 1, 2013) GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX. Konuralp Journal of Mathematics 1 2 67–79.
IEEE İ. İşcan, “GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX”, Konuralp J. Math., vol. 1, no. 2, pp. 67–79, 2013.
ISNAD İşcan, İmdat. “GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX”. Konuralp Journal of Mathematics 1/2 (October 2013), 67-79.
JAMA İşcan İ. GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX. Konuralp J. Math. 2013;1:67–79.
MLA İşcan, İmdat. “GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX”. Konuralp Journal of Mathematics, vol. 1, no. 2, 2013, pp. 67-79.
Vancouver İşcan İ. GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRALS FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX. Konuralp J. Math. 2013;1(2):67-79.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.