Araştırma Makalesi
BibTex RIS Kaynak Göster

EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE

Yıl 2015, Cilt: 3 Sayı: 1, 121 - 125, 01.04.2015

Öz

Let S = (P;L) be a non-trivial regular nite linear space with v points, v + k lines, k  3: We show that if S contains at least 􀀀k 2  lines of size b(p) 􀀀 2 and one line size b(p) for some point p, then S is embeddable in a unique projective plane  of order b(p) 􀀀 1 and  􀀀 s is a complete graph of order k ; where b(p)  4 for some point p:

Kaynakça

  • [1] Batten , L.M. and Beutelspacher, A. ; Combinatorics of points and lines, Cambridge Univer- sity Press, 1993.
  • [2] Batten, L.M. ; Embedding pseudo-complements in nite projective planes, Ars Combin. 24 (1987), 129-132.
  • [3] Bose , R.C. and Shrikhande, S.S. ; Embedding the complement of a oval in a projective plane of even order, Discrete Math. 6 (1973), 305-312.
  • [4] Bruck, R. H. ; Existence problems for classes of nite projective planes, Lectures delivered to the Canadian Math. Congress, Sask., Aug.1963.
  • [5] De Brujin N.G and Erdos, P. ; On a combinatorial problem, Nederl Akad.Wetemsch. proc. Sect. Sci. 51 (1948), 1277 - 1279.
  • [6] De Witte, P. ;The exceptional case in a Theorem of Bose and Shrikhande, J. Austral.Math. soc. 24 (Series A) (1977), 64-78.
  • [7] Dickey, L. J. ; Embedding the complement of a unital in a projective plane, Atti del convegno di Geometria Combinatoria e sue Applicazioni, Perugia, 1971, pp. 199-203.
  • [8] Gunaltl, _I. and Olgun, S. ; On the embedding some linear spaces in nite projective planes. J.geom. 68 (2000) 96-99.
  • [9] Gunaltl, _I. , Anapa, P. and Olgun, S. ; On the embedding of complements of some hyperbolic planes. Ars Combin. 80 (2006), pp. 205-214.
  • [10] Hall, M. ; Projective planes, Trans. Amer. Math. Soc. 54 (1943) 229-277.
  • [11] Kaya, R. and  Ozcan, E. ; On the construction of B-L planes from projective planes, Rendiconti del Seminario Matematico Di Bresciot (1984), pp. 427-434.
  • [12] Mullin, R.C. and Vanstone, S.A. ; Embedding the pseudo-complements of a quadrilateral in a nite projective plane, Ann.New York Acad.Sci.319, 405-412.
  • [13] Totten, J. ; Embedding the complement of two lines in a nite projective plane, J.Austral.Math.Soc. 22 (Series A) (1976), 27-34.
Yıl 2015, Cilt: 3 Sayı: 1, 121 - 125, 01.04.2015

Öz

Kaynakça

  • [1] Batten , L.M. and Beutelspacher, A. ; Combinatorics of points and lines, Cambridge Univer- sity Press, 1993.
  • [2] Batten, L.M. ; Embedding pseudo-complements in nite projective planes, Ars Combin. 24 (1987), 129-132.
  • [3] Bose , R.C. and Shrikhande, S.S. ; Embedding the complement of a oval in a projective plane of even order, Discrete Math. 6 (1973), 305-312.
  • [4] Bruck, R. H. ; Existence problems for classes of nite projective planes, Lectures delivered to the Canadian Math. Congress, Sask., Aug.1963.
  • [5] De Brujin N.G and Erdos, P. ; On a combinatorial problem, Nederl Akad.Wetemsch. proc. Sect. Sci. 51 (1948), 1277 - 1279.
  • [6] De Witte, P. ;The exceptional case in a Theorem of Bose and Shrikhande, J. Austral.Math. soc. 24 (Series A) (1977), 64-78.
  • [7] Dickey, L. J. ; Embedding the complement of a unital in a projective plane, Atti del convegno di Geometria Combinatoria e sue Applicazioni, Perugia, 1971, pp. 199-203.
  • [8] Gunaltl, _I. and Olgun, S. ; On the embedding some linear spaces in nite projective planes. J.geom. 68 (2000) 96-99.
  • [9] Gunaltl, _I. , Anapa, P. and Olgun, S. ; On the embedding of complements of some hyperbolic planes. Ars Combin. 80 (2006), pp. 205-214.
  • [10] Hall, M. ; Projective planes, Trans. Amer. Math. Soc. 54 (1943) 229-277.
  • [11] Kaya, R. and  Ozcan, E. ; On the construction of B-L planes from projective planes, Rendiconti del Seminario Matematico Di Bresciot (1984), pp. 427-434.
  • [12] Mullin, R.C. and Vanstone, S.A. ; Embedding the pseudo-complements of a quadrilateral in a nite projective plane, Ann.New York Acad.Sci.319, 405-412.
  • [13] Totten, J. ; Embedding the complement of two lines in a nite projective plane, J.Austral.Math.Soc. 22 (Series A) (1976), 27-34.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

İbrahim Günaltı

Yayımlanma Tarihi 1 Nisan 2015
Gönderilme Tarihi 10 Temmuz 2014
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 1

Kaynak Göster

APA Günaltı, İ. (2015). EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE. Konuralp Journal of Mathematics, 3(1), 121-125.
AMA Günaltı İ. EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE. Konuralp J. Math. Nisan 2015;3(1):121-125.
Chicago Günaltı, İbrahim. “EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE”. Konuralp Journal of Mathematics 3, sy. 1 (Nisan 2015): 121-25.
EndNote Günaltı İ (01 Nisan 2015) EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE. Konuralp Journal of Mathematics 3 1 121–125.
IEEE İ. Günaltı, “EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE”, Konuralp J. Math., c. 3, sy. 1, ss. 121–125, 2015.
ISNAD Günaltı, İbrahim. “EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE”. Konuralp Journal of Mathematics 3/1 (Nisan 2015), 121-125.
JAMA Günaltı İ. EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE. Konuralp J. Math. 2015;3:121–125.
MLA Günaltı, İbrahim. “EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE”. Konuralp Journal of Mathematics, c. 3, sy. 1, 2015, ss. 121-5.
Vancouver Günaltı İ. EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH IN A FINITE PROJECTIVE PLANE. Konuralp J. Math. 2015;3(1):121-5.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.