Research Article
BibTex RIS Cite

ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM

Year 2016, Volume: 4 Issue: 1, 33 - 44, 01.04.2016

Abstract

In this paper, we prove that every semi-conformal harmonic map between Riemannian manifolds is a generalized f-harmonic map. We also prove a Liouville type theorem for f-harmonic maps in general sense from IRm onto a Riemannian manifold N with non-positive sectional curvature, where f 2 C1(IRm  N) is a smooth positive function which satis es some suitable conditions.

References

  • [1] Baird P., Fardoun A. and Ouakkas S., Liouville-type Theorems for Biharmonic Maps between Riemannian Manifolds, Advances in Calculus of Variations. 3, Issue 1 (2009), 4968.
  • [2] Calderbank D. M. J., Gauduchon P. and Herzlich M., On the Kato inequality in Riemannian geometry, Sminaires et Congrs 4, SMF 2000, p. 95-113.
  • [3] Cheng, S. Y., Liouville Theorem for Harmonic Maps, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, (1979), 147-151, Proc.Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980.
  • [4] Djaa M., Mohamed Cherif A., Zegga K. And Ouakkas S., On the Generalized of Harmonic and Bi-harmonic Maps, international electronic journal of geometry, 5 no. 1(2012), 90-100.
  • [5] Djaa M. and Mohamed Cherif A., On the Generalized f-Biharmonic Maps and Stress f- Bienergy Tensor, Journal of Geometry and Symmetry in Physics, JGSP 29(2013), 65-81.
  • [6] Baird P., Wood J.C., Harmonic Morphisms between Riemannain Manifolds, Clarendon Press, Oxford, 2003.
  • [7] P. Brard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990) 261266.
  • [8] Liu J., Liouville-type Theorems of p-harmonic Maps with free Boundary Values, Hiroshima Math.40 (2010), 333-342
  • [9] Eells, J. Jr. and Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer.J. Math. 86 1964 109-160.
  • [10] Ouakkas S., Nasri R. and Djaa M., On the f-harmonic and f-biharmonic Maps, J. P. Journal of Geometry. and Topology. 10 1 (2010), 11-27.
  • [11] A.M. Cherif and M. Djaa, Geometry of energy and bienergy variations between Riemannian manifolds, Kyungpook Mathematical Journal, 55(2015), pp 715-730.
  • [12] Mohammed Cherif A. and Djaa M.,On Generalized f-harmonic Morphisms, Com- ment.Math.Univ.Carolin. 55,1 (2014) 17-77.
  • [13] Mohamed Cherif A., Elhendi H. and Terbeche M., On Generalized Conformal Maps, Bulletin of Mathematical Analysis and Applications, 4 Issue 4 (2012), 99-108.
  • [14] Rimoldi M. and Veronelli G., f-Harmonic Maps and Applications to Gradient Ricci Solitons, arXiv:1112.3637, (2011).
  • [15] Schoen R. M. and Yau, S.-T., Harmonic Maps and the Topology of Stable Hypersurfaces and Manifolds with Non-negative Ricci Curvature, Comment. Math. Helv. 51 (1976), no.3, 333-341.
  • [16] Xu Wang D., Harmonic Maps from Sooth Metric Measure Spaces, Internat. J. Math. 23 (2012), no. 9, 1250095, 21.
  • [17] Young W.C. , On the multiplication of successions of Fourier constants, Proc. Royal Soc. Lond. 87 (1912), 331-339.
  • [18] Zegga K., Djaa M. and A.M. Cherif, On the f-biharmonic maps and submanifolds, Kyungpook Mathematical Journal, 55 (2015), pp 157-168.
Year 2016, Volume: 4 Issue: 1, 33 - 44, 01.04.2016

Abstract

References

  • [1] Baird P., Fardoun A. and Ouakkas S., Liouville-type Theorems for Biharmonic Maps between Riemannian Manifolds, Advances in Calculus of Variations. 3, Issue 1 (2009), 4968.
  • [2] Calderbank D. M. J., Gauduchon P. and Herzlich M., On the Kato inequality in Riemannian geometry, Sminaires et Congrs 4, SMF 2000, p. 95-113.
  • [3] Cheng, S. Y., Liouville Theorem for Harmonic Maps, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, (1979), 147-151, Proc.Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980.
  • [4] Djaa M., Mohamed Cherif A., Zegga K. And Ouakkas S., On the Generalized of Harmonic and Bi-harmonic Maps, international electronic journal of geometry, 5 no. 1(2012), 90-100.
  • [5] Djaa M. and Mohamed Cherif A., On the Generalized f-Biharmonic Maps and Stress f- Bienergy Tensor, Journal of Geometry and Symmetry in Physics, JGSP 29(2013), 65-81.
  • [6] Baird P., Wood J.C., Harmonic Morphisms between Riemannain Manifolds, Clarendon Press, Oxford, 2003.
  • [7] P. Brard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990) 261266.
  • [8] Liu J., Liouville-type Theorems of p-harmonic Maps with free Boundary Values, Hiroshima Math.40 (2010), 333-342
  • [9] Eells, J. Jr. and Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer.J. Math. 86 1964 109-160.
  • [10] Ouakkas S., Nasri R. and Djaa M., On the f-harmonic and f-biharmonic Maps, J. P. Journal of Geometry. and Topology. 10 1 (2010), 11-27.
  • [11] A.M. Cherif and M. Djaa, Geometry of energy and bienergy variations between Riemannian manifolds, Kyungpook Mathematical Journal, 55(2015), pp 715-730.
  • [12] Mohammed Cherif A. and Djaa M.,On Generalized f-harmonic Morphisms, Com- ment.Math.Univ.Carolin. 55,1 (2014) 17-77.
  • [13] Mohamed Cherif A., Elhendi H. and Terbeche M., On Generalized Conformal Maps, Bulletin of Mathematical Analysis and Applications, 4 Issue 4 (2012), 99-108.
  • [14] Rimoldi M. and Veronelli G., f-Harmonic Maps and Applications to Gradient Ricci Solitons, arXiv:1112.3637, (2011).
  • [15] Schoen R. M. and Yau, S.-T., Harmonic Maps and the Topology of Stable Hypersurfaces and Manifolds with Non-negative Ricci Curvature, Comment. Math. Helv. 51 (1976), no.3, 333-341.
  • [16] Xu Wang D., Harmonic Maps from Sooth Metric Measure Spaces, Internat. J. Math. 23 (2012), no. 9, 1250095, 21.
  • [17] Young W.C. , On the multiplication of successions of Fourier constants, Proc. Royal Soc. Lond. 87 (1912), 331-339.
  • [18] Zegga K., Djaa M. and A.M. Cherif, On the f-biharmonic maps and submanifolds, Kyungpook Mathematical Journal, 55 (2015), pp 157-168.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustapha Djaa This is me

Ahmed Mohamed Cherıf This is me

Publication Date April 1, 2016
Submission Date July 10, 2014
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Djaa, M., & Cherıf, A. M. (2016). ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM. Konuralp Journal of Mathematics, 4(1), 33-44.
AMA Djaa M, Cherıf AM. ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM. Konuralp J. Math. April 2016;4(1):33-44.
Chicago Djaa, Mustapha, and Ahmed Mohamed Cherıf. “ON GENERALIZED F-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 33-44.
EndNote Djaa M, Cherıf AM (April 1, 2016) ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM. Konuralp Journal of Mathematics 4 1 33–44.
IEEE M. Djaa and A. M. Cherıf, “ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM”, Konuralp J. Math., vol. 4, no. 1, pp. 33–44, 2016.
ISNAD Djaa, Mustapha - Cherıf, Ahmed Mohamed. “ON GENERALIZED F-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM”. Konuralp Journal of Mathematics 4/1 (April 2016), 33-44.
JAMA Djaa M, Cherıf AM. ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM. Konuralp J. Math. 2016;4:33–44.
MLA Djaa, Mustapha and Ahmed Mohamed Cherıf. “ON GENERALIZED F-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 33-44.
Vancouver Djaa M, Cherıf AM. ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM. Konuralp J. Math. 2016;4(1):33-44.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.