Research Article
BibTex RIS Cite

COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS

Year 2016, Volume: 4 Issue: 1, 164 - 171, 01.04.2016

Abstract

For a positive integer k  2, the kth-order weighted slant Hankel operator D k; on L2( ) with  2 L1( ) is de ned as D k; = J WkM  , where J is the re ection operator given by J en = e􀀀n for each n 2 Z and Wk is given by Wken(z) = m km em(z) if n = km;m 2 Z and Wken(z) = 0 if n 6= km. The paper discusses the product and commutativity of kth-order weighted slant Hankel operators of di erent order. Compactness and essential commutativity of these operators are also addressed and it is obtained that the commutativity of these operators coincides with the essential commutativity.

References

  • [1] V.M. Adamjan, D.Z. Arov and M.G. Krein, In nite Hankel matrices and generalized problems of Caratheodory-Fejer and F. Riesz, Functional Anal. Appl., 2, 1968, 1-18.
  • [2] S.C. Arora and R. Batra, On generalized slant Toeplitz operators, Indian J. Math., 45(2), 2003, 121-134.
  • [3] S.C. Arora and J. Bhola, kth-order slant Hankel operators, Mathematical Sc. Reas. Journal (U.S.A.), 12(3), 2008, 53-63.
  • [4] S.C. Arora and R. Kathuria, On kth􀀀order slant weighted Toeplitz operators, The Scienti c World Journal, Volume 2013, Article ID. 960853, 1-5.
  • [5] Ruben Marti nez-Avenda~no, Essentially Hankel operators, J. London Math. Soc., Vol.66(2), 2002, 741-752.
  • [6] G. Datt and N. Ohri, Commutativity of slant weighted Toeplitz operators, Communicated.
  • [7] G. Datt and D.K. Porwal, Weighted Hankel operators and matrices, Matematicki Vesnik, 65(3), 2013, 353{363.
  • [8] G. Datt and D.K. Porwal, Generalization of weighted slant Hankel operators, To appear in Mathematica Slovaca.
  • [9] G. Datt and R. Aggarwal, Essentially 􀀀 Toeplitz operators, General Mathematics, Vol. 21 (2), 2013, 57-69.
  • [10] H. Hamburger, Uber eine Erweiterung des Stieltjesschen Momentproblems, I, Math. Ann., 81, 1920, 235-319.
  • [11] Chaomei Liu and Yufeng Lu, Product and commutativity of slant Toeplitz operators, J. Math. Reasearch with Applications, 33(1), 2013, 122-126.
  • [12] A.L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Math. Surveys, No.13, American Mathematical Society, Rhode Ireland, 1974, 49{128.
Year 2016, Volume: 4 Issue: 1, 164 - 171, 01.04.2016

Abstract

References

  • [1] V.M. Adamjan, D.Z. Arov and M.G. Krein, In nite Hankel matrices and generalized problems of Caratheodory-Fejer and F. Riesz, Functional Anal. Appl., 2, 1968, 1-18.
  • [2] S.C. Arora and R. Batra, On generalized slant Toeplitz operators, Indian J. Math., 45(2), 2003, 121-134.
  • [3] S.C. Arora and J. Bhola, kth-order slant Hankel operators, Mathematical Sc. Reas. Journal (U.S.A.), 12(3), 2008, 53-63.
  • [4] S.C. Arora and R. Kathuria, On kth􀀀order slant weighted Toeplitz operators, The Scienti c World Journal, Volume 2013, Article ID. 960853, 1-5.
  • [5] Ruben Marti nez-Avenda~no, Essentially Hankel operators, J. London Math. Soc., Vol.66(2), 2002, 741-752.
  • [6] G. Datt and N. Ohri, Commutativity of slant weighted Toeplitz operators, Communicated.
  • [7] G. Datt and D.K. Porwal, Weighted Hankel operators and matrices, Matematicki Vesnik, 65(3), 2013, 353{363.
  • [8] G. Datt and D.K. Porwal, Generalization of weighted slant Hankel operators, To appear in Mathematica Slovaca.
  • [9] G. Datt and R. Aggarwal, Essentially 􀀀 Toeplitz operators, General Mathematics, Vol. 21 (2), 2013, 57-69.
  • [10] H. Hamburger, Uber eine Erweiterung des Stieltjesschen Momentproblems, I, Math. Ann., 81, 1920, 235-319.
  • [11] Chaomei Liu and Yufeng Lu, Product and commutativity of slant Toeplitz operators, J. Math. Reasearch with Applications, 33(1), 2013, 122-126.
  • [12] A.L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Math. Surveys, No.13, American Mathematical Society, Rhode Ireland, 1974, 49{128.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gopal Datt

Anshika Mıttal This is me

Publication Date April 1, 2016
Submission Date July 10, 2014
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Datt, G., & Mıttal, A. (2016). COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS. Konuralp Journal of Mathematics, 4(1), 164-171.
AMA Datt G, Mıttal A. COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS. Konuralp J. Math. April 2016;4(1):164-171.
Chicago Datt, Gopal, and Anshika Mıttal. “COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 164-71.
EndNote Datt G, Mıttal A (April 1, 2016) COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS. Konuralp Journal of Mathematics 4 1 164–171.
IEEE G. Datt and A. Mıttal, “COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS”, Konuralp J. Math., vol. 4, no. 1, pp. 164–171, 2016.
ISNAD Datt, Gopal - Mıttal, Anshika. “COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS”. Konuralp Journal of Mathematics 4/1 (April 2016), 164-171.
JAMA Datt G, Mıttal A. COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS. Konuralp J. Math. 2016;4:164–171.
MLA Datt, Gopal and Anshika Mıttal. “COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 164-71.
Vancouver Datt G, Mıttal A. COMMUTATIVITY OF WEIGHTED SLANT HANKEL OPERATORS. Konuralp J. Math. 2016;4(1):164-71.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.